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EXECUTIVE SUMMARY 
 

 

Research Objectives 
 

Owensboro cable-stayed bridge, dedicated as the William H. Natcher Bridge, 

connects Owensboro (Daviess County), Kentucky and Rockport (Spencer County), 

Indiana over the Ohio River as seen in the photographs in Figures 1.1 and 1.2. The bridge 

was officially opened to traffic on October 21, 2002. The objective of this investigation is 

to analyze the dynamic characteristics of the bridge and establish a finite element model 

as a baseline in the structural analysis and monitoring of the Owensboro cable-stayed 

bridge. 

 

To achieve the objective, this study contains the following four tasks: 

1) On-site ambient vibration testing; 

2) Finite element modeling and modal analysis; 

3) Finite element model updating (calibration) using field test results; 

4) Cable testing and modeling. 

 

Background 
 
 Cable-stayed bridges have become one of the most frequently used bridge 

systems throughout the world because of their aesthetic appeal, structural efficiency, 

enhanced stiffness compared with suspension bridges, ease of construction and small size 

of substructures. Over the past 40 years, rapid developments have been made on modern 

cable-stayed bridges. With the main span length increasing, more shallow and slender 

stiffness girders used in modern cable-stayed bridges, the safety of the whole bridge 

under service loadings and environmental dynamic loadings, such as impact, wind and 

earthquake loadings, presents increasingly important concerns in design, construction and 

service. It has become essential to synthetically understand and realistically predict their 

response to these loadings. The unique structural styles of cable-stayed bridges make the 
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span length longer and beautify the environment, but also add to the difficulties in 

accurate structural analysis. It is known that these long span and cable-stayed bridges 

constitute complex structural components with high geometric nonlinearity. In addition, 

the initial equilibrium configuration under dead loads has a significant effect on the 

structural behavior of cable-stayed bridges. 

 

The discretized finite element method provides a convenient and reliable 

idealization of the structural continua and is particularly effective when using digital-

computer analyses. The finite deformation theory with a discrete finite element model is 

the most powerful tool used in the nonlinear analysis of modern cable-stayed bridges. 

However, it is not an easy task to establish a real and reliable finite element model of 

such complex structures. The process requires the combination of the bridge field testing 

and analysis. The initial finite element model has to be updated or calibrated by the field 

test results. 

 

Field Free Vibration Testing 
 

On-site dynamic testing of a bridge provides an accurate and reliable description 

of its dynamic characteristics. Matching the actual dynamic characteristics of bridges has 

become an integral part of dynamics-based structure evaluation in order to eliminate the 

uncertainties and assumptions involved in analytical modeling. The current dynamic 

characteristics (frequencies and mode shapes) of the Owensboro cable-stayed bridge were 

obtained from the field free vibration test results under the excitation due to running the 

loaded trucks. These dynamic characteristics were subsequently used as the basis for 

calibrating the finite element model to establish a baseline for the bridge. 

 

Finite Element Modeling and Calibration 
 
  A three-dimensional finite element model was constructed in the ANSYS, one of 

the most powerful engineering design and analysis commercial software packages. The 

established finite element model is then used to conduct both static and dynamic analysis 
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of the Owensboro cable-stayed bridge. Starting from the deformed equilibrium 

configuration, the modal analysis is performed. The modal analysis of the cable-stayed 

bridge is therefore a “pre-stressed” modal analysis. All possible frequencies and mode 

shapes can be calculated. 

 

One of the advantages of finite element modeling and analysis is that parametric 

studies can be performed. The structural and material parameters that affect the modal 

properties of the bridge can be identified from such parametric studies. From the 

parametric studies, it is found that the key parameters affecting the vertical modal 

properties are the mass, cable sectional area, cable elastic modulus and deck vertical 

bending stiffness. The key parameters affecting the transverse and torsion modal 

properties are the mass, cable sectional area, cable elastic modulus and deck lateral 

bending stiffness. The parametric studies reported here not only prove the efficiency of 

the finite element methodology, but also demonstrate the variation in modal response 

caused by a variation in the input parameters. 

 

Finite element model calibration was then carried out by adjusting its structural or 

material parameters, which affect the modal properties of the bridge, such that the FEM 

predicted frequencies and mode shape match the experimentally observed frequencies 

and mode shapes. The first eight frequencies determined through free vibration 

measurements in the system identified modes and FEM predictions are summarized in 

Tables E-1. This table shows that good agreement exist between the experimental and 

calibrated analytical results. 

 

Cable Testing and Modeling 
 
Cable testing and modeling for the Owensboro Bridge included the following 

accomplishments: 

• Two field tests of the cables were conducted (on October 15-16, 2002 and 

August 4-5, 2003), including tests with loaded trucks and with ambient (typical 

traffic and wind) excitation. Tests were conducted over a range of temperatures. 
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• Finite element models for the cables were developed using the as-built cable 

properties. Models included a set of twelve cables.  

• Comparison of finite-element model results to field test results showed good 

correlation. 

Notable results include the following: 

• Field measurement of all cables can be performed in approximately 1.5 days 

using short time records and Cepstrum signal processing techniques. Periodic 

monitoring may be useful for the cables of the Owensboro bridge to understand 

tension changes as the bridge is in use. 

• Field tests of the cables on both occasions resulted in consistent fundamental 

frequencies.  

• Excessive motion of the cable cross ties (restrainers) was observed during both 

field tests. This raises concerns suggesting close inspection of the cross ties in 

case fatigue becomes a problem. 

• No model refinement for the cable models was required for good correlation 

between model and field test results. 

 

Table E-1 Comparison of Frequencies 

Mode Test (Hz) FE Model (Hz) Mode classification 
1 0.301667 0.293403 Vertical 
2 0.388333 0.373609 Vertical 
3 - 0.524643 Transverse + Torsion 
4 0.601667 0.578998 Vertical 
5 0.696667 0.675054 Vertical; Torsion for FEM 
6 - 0.685296 Transverse + Torsion 
7 0.74 0.710348 Vertical 
8 - 0.758056 Torsion 
9 - 0.766625 Transverse + Torsion 
10 - 0.808145 Tower Sway + Torsion 
11 - 0.816315 Tower Sway + Torsion 
12 0.818333 0.821629 Vertical 
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Conclusions and Recommendations 
 
On site free vibration testing provides a fast way to obtain the real dynamic 

properties of a structure. The peak picking identification is very fast and efficient since 

no model has to be fitted to the data. For real applications, the peak picking method could 

be used on site to verify the quality of the measurements. But the mode shapes for the 

transverse direction did not match well since the bridge is very stiff in the transverse 

direction and the transverse excitation data could not be filtered from the noise data. 

 

A good agreement of frequencies has been found between the results of the 

calibrated finite element model and in situ free vibration testing results. The identified 

frequencies from the high-speed measurements are quite stable. The better matching for 

higher modes is not expected and not realistic either, as the experimental modal 

properties of the bridge come from the output-only measurement. The calibrated finite 

element model may be used as a baseline in the future structural analysis and monitoring 

of the Owensboro cable-stayed bridge. 

 

Related to cable modeling and testing, we conclude the following: 1) as-built 

information on the cable construction was used to develop verified finite-element models 

of the 96 cables which can be used as a baseline for future evaluation of cable stiffness 

and structural integrity, 2) field-survey testing of all cables can be accomplished with 

ambient (traffic) excitation in 1.5 days, so periodic monitoring of the cables is possible 

without permanent installation of a measurement system, 3) Excessive motion of the 

cable cross ties (restrainers) was observed during both field tests. This raises concerns 

suggesting close inspection of the cross ties in case fatigue becomes a problem and 4) 

periodic measurement of the cable response is recommended to monitor the continuing 

effectiveness of the restrainers and structural integrity of the cables.  
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1. INTRODUCTION 
 
 
1.1. General 
 
 Cable-stayed bridges have become one of the most frequently used bridge 

systems throughout the world because of their aesthetic appeal, structural efficiency, 

enhanced stiffness compared with suspension bridges, ease of construction and small size 

of substructures. Over the past 40 years, rapid developments have been made in modern 

cable-stayed bridges. With the main span length increased and more shallow and slender 

stiffness girders used in modern cable-stayed bridges, their safety of the whole bridges 

under service loadings and environmental dynamic loadings, such as impact, wind and 

earthquake loadings, presents increasingly important concerns in design, construction and 

service. It has become essential to synthetically understand and realistically predict their 

response to these loadings. The unique structural styles of cable-stayed bridges make the 

span length longer and beautify the environment, but also add to the difficulties in 

accurate structural analysis. It is known that these long span and cable-stayed bridges 

constitute complex structural components with high geometric nonlinearity. In addition, 

the initial equilibrium configuration under dead loads has a significant effect on the 

structural behavior of cable-stayed bridges. 

 
 A long span cable-stayed bridge exhibits nonlinear characteristics under any load 

conditions. These nonlinear sources may come from 

  The sag effect of inclined stay cables; 

  The combined axial load and bending moment interaction effect of the girders 

and towers; 

  The large displacement effect; 

  The nonlinear stress-strain behavior of materials. 

 
The discretized finite element method provides a convenient and reliable 

idealization of the structural continua and is particularly effective when using digital-

computer analyses. The finite deformation theory with a discrete finite element model is 

the most powerful tool used in the nonlinear analysis of modern cable-stayed bridges. 
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However, it is not an easy task to establish a real and reliable finite element model of 

such complex structures. The process requires the combination of bridge field test results 

and analyses. The initial finite element model has to be updated or calibrated by field test 

results. 

 
 For a long span bridge, it is useful to establish both the analytical dynamic 

characteristics from the finite element predictions and the measured dynamic 

characteristics from the field testing. Many investigations of the dynamic characteristics 

of the cable-stayed bridge have been conducted over the years (Fleming and Egeseli 

1980, Wilson and Gravelle 1991, Wilson and Liu 1991, Yang and Fonder 1998, Ren and 

Obata 1999, Zhu et al. 2000, Chang et al. 2001, Zhang et al., Cunha et al. 2001, Au et al. 

2001 and Harik et al. 2005). In these works, the ambient structural response due to wind 

and/or traffic loads has been proven to be useful for determining the dynamic 

characteristics of bridges. The structural model updating as a form of calibration is a 

rapidly developing technology, and provides a “global” way to evaluate the structural 

state. Detailed literature reviews have been performed by Doebling et al. (1996), Salawu 

(1997) and Stubbs et al. (1999). While its applications have been diverse and scattered 

(Casas and Aparicio 1994, Chen et al. 1995, Hearn and Testa 1991, Harik et al. 1997, 

Harik et al. 1999, Juneja et al. 1997, Liu 1995, Mazurek and Dewolf 1990). Once a finite 

element model is calibrated according to the measured dynamic characteristics, the model 

can then be used for aerodynamic and /or seismic response predictions. Furthermore, the 

calibrated finite element model can be used as a baseline for health assessments of a 

bridge structure in the future. 

 
The present work focuses on the comprehensive research to conceive a three-

dimensional finite element model of the Owensboro cable-stayed bridge. Therefore, a 

three-dimensional finite element model has been created in the ANSYS, one general 

purpose commercial finite element software. All geometrically nonlinear sources are 

included such as cable sags, large deflections and axial force and bending moment 

interactions. The initial equilibrium configuration is achieved to account for the effect of 

dead loads. The finite element model is further updated through the use of free vibration 

field test results. The analytical model calibrated with experimental results is used to 
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study both static and dynamic responses of the bridge to various parametric changes. This 

calibrated finite element model can be utilized as a baseline in the structural analysis and 

monitoring of the Owensboro cable-stayed bridge. Cable testing and modeling for the 

Owensboro cable-stayed bridge are performed separately. They included field tests and 

finite element modeling of the cables. The outcomes of this research could be applied to 

provide useful information and data for the development of more refined design and 

analysis tools with future long span cable-stayed bridges. 

 
1.2. Bridge Description 
 

Owensboro cable-stayed bridge, dedicated as the William H. Natcher Bridge, 

connects Owensboro (Daviess County), Kentucky and Rockport (Spencer County), 

Indiana over the Ohio River as seen in the photographs in Figures 1.1 and 1.2. It is one of 

the longest cable-stayed spans over a U.S. inland waterway system. The main bridge with 

a total length of 4,505 ft. includes the main span being 1200 ft. in length, two side spans 

with each being 500 ft. long, Kentucky approach being 1345 ft. long, and Indiana 

approach being 960 ft. long. Whole bridge width of 67 feet from parapet to parapet 

includes four 12 foot traffic lanes and four 4 foot shoulders. The main cable-stayed 

superstructure consists of a concrete deck supported by two main 12 foot deep steel plate 

girders with floor beams spaced at 30 feet. The deck consists of pre-cast deck sections 

with cast-in-place joints and post-tensioning in both longitudinal and transverse 

directions. The elevation drawing is shown in Figure 1.3. The bridge officially opened to 

traffic on October 21, 2002. 
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Figure 1.1 Aerial View of the Owensboro Cable-Stayed Bridge 
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Figure 1.2 Side View of the Owensboro Cable-Stayed Bridge 
 

Steel stay cables are arranged in a two plane semi harped system along each edge 

of the deck. The ninety-six cables are nominally four sets of twenty-four cables. All 

cable-stayed bridges have had problems with stay wind gallop when the right 

combination of light rain and wind occur. However, the stay cable system of the 

Owensboro cable-stayed bridge is state-of-the-art. A co-extruded high density 

polyethylene pipe has been used which has a brilliant white outer layer eliminating the 

necessity to use a tape wrap. The outer layer has a small spiral bead around the pipe to 

break up air flow when there is light rain and wind to help prevent cable gallop. In 

addition, stay damping cables are connected between the stay cables with soft neoprene 

collars to further dampen galloping. 

 

Two diamond-shaped main towers increase superstructure's stiff and add stability 

against wind and seismic loads. The towers are 345 feet above the surface of the river and 

are supported on concrete filled drilled shafts. Abutments are conventional concrete units 

supported by steel H piles. 
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Figure 1.3 Plan and Elevation of the Owensboro Cable-Stayed Bridge 
 
 
1.3. On-Site Dynamic Testing 
 

  On-site dynamic testing of a bridge provides an accurate and reliable description 

of its dynamic characteristics. In the civil engineering, structures such as bridges or 

buildings are considered systems and the system identification (experimental modal 

analysis) means the extraction of modal parameters (frequencies, damping ratios and 

mode shapes) from dynamic measurements. These modal parameters were utilized as a 

basis in the finite element model updating, structural damage detection, structural safety 

evaluation, and structural health monitoring on service. 

 

There are three main types of bridge dynamic testing: (1) forced vibration testing; 

(2) free vibration testing; and (3) ambient vibration testing. In forced vibration testing and 

free vibration testing, the structure is excited by artificial means such as shakers, drop 

weights or test vehicle. By suddenly dropping a load on the structure, a condition of free 

vibration is induced. The disadvantage of this method is that traffic has to be shut down 

for an extended period of time. It is clear that this can be a serious problem for bridges 

that carry significant vehicular traffic. 
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In contrast, ambient vibration testing does not affect the traffic on the bridge 

because it uses existing vehicular traffic and natural wind loading to excite the bridge. 

This method is obviously cheaper than forced vibration testing since no extra equipment 

is needed to excite the structure. However, relatively long records of response 

measurements are required and the measured data are more stochastic. Consequently, the 

system identification results may be less reliable than such results obtained from a known 

forced vibration. 

 

For the Owensboro cable-stayed bridge, on-site dynamic testing was performed 

using the free vibration testing method. Dynamic characteristics (frequencies and mode 

shapes) of the Owensboro cable-stayed bridge were extracted from the peak of the 

average normalized power spectral densities (ANPSDs). These vibration properties are 

subsequently used as a basis for updating the finite element model of the bridge. 

 

1.4. Finite Element Modeling and Calibration 
 

With modern commercial finite element programs it is possible to accurately 

predict both static and dynamic structural behavior of cable-stayed bridges. The 

discretized finite element model provides a convenient and reliable idealization of the 

structure. Thanks to rapid computer developments and the wealth of matrix analysis 

studies on nonlinear problems available, finite deformation theory with a discrete finite 

element model is one of the most powerful tools used in the analysis and design of cable-

stayed bridges. An important advantage of the finite element method is that structural 

complexities can be considered effectively. Application of the finite deformation theory 

can include the effect of all nonlinear cable-stayed bridge sources such as cable sags, 

large deflections, and axial force and bending moment interactions. Another advantage of 

the finite element method lies in the capability of in-depth dynamic analysis. 

 

A complete three-dimensional finite element model of the Owensboro cable-

stayed bridge has been developed for the ANSYS (ANSYS 6.1) commercial finite 

element program. The ANSYS has been chosen because of the program’s significant 
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capability to account for cable stress stiffening and pre-stressed modal analysis 

capability. The finite element model of the Owensboro cable-stayed bridge is composed 

of two element types: 3-D elastic beam elements and 3-D tension-only truss elements. 

The model consists of 668 nodes and 1087 finite elements with a total of 3960 active 

degrees of freedom (DOF). 

 

In the design of cable-stayed bridges, the dead load often contributes most of 

bridge load. In the finite element analysis, the dead load influence is included through 

static analysis under dead loads before the live load or dynamic analysis is carried out. 

The objective of the static analysis process is to achieve the deformed equilibrium 

configuration of the bridge due to dead loads where the structural members are “pre-

stressed”. The initial tension in the cables due to the dead load is determined by on-site 

testing. In addition, the geometric nonlinear effect has been studied by including the 

stress stiffening and large deflection. 

 

A cable-stayed bridge is a highly pre-stressed structure. Starting from the 

deformed equilibrium configuration, the modal analysis is performed. Therefore, the dead 

load effect to the stiffness is included in the modal analysis through the specification of 

the pre-stress forces in the cables. The modal analysis is consequently a “pre-stressed” 

modal analysis, from which possible frequencies and mode shapes can be calculated. A 

coupled mode can be included, which gives a comprehensive understanding of the 

dynamic behavior of cable-stayed bridges. Parametric studies can also be performed by 

using the following parameters: deck self-weight, cable stiffness, and edge girder and 

sub-stringer bending stiffness. 

 

Due to deviations in the structure’s original geometric or material properties it is 

difficult to establish the initial finite element model for structural evaluation. The original 

finite element model has to be updated or calibrated using field testing results in order to 

approximate the current conditions of the bridge. Finite element model updating is 

carried out until the finite element analytic frequencies and mode shapes match the field 



Introduction 

 9

testing results, maintaining physically realistic material properties. The updated finite 

element model is used as the baseline model for future evaluations of the bridge. 

 

1.5. Cable Testing and Modeling 
 

Separate consideration of the cable response is motivated by the occurrence of 

wind-induced vibrations of bridge stay cables worldwide. Observed and documented 

since the mid-1980’s, a particularly troublesome vibration has been observed in light-to-

moderate wind combined with light rain. “Rain-wind” vibrations led to failure of anchor 

details on many bridges. Researchers worldwide continue to study factors affecting wind-

induced stay cable vibration toward the goal of developing design approaches for 

prevention and mitigation. 

 

The ninety-six cables of the Owensboro cable-stayed bridge are unique flexible 

structures whose dynamic response characteristics depend on material properties, tension, 

and possibly temperature. To bring the bridge deck into alignment side-to-side as the 

constructed sections met in the center and to smooth the vertical deck profile, cable 

design tensions were adjusted from those in the original plans. Cable testing and 

modeling for the Owensboro cable-stayed bridge included two field tests of the cables. 

The first of these was just before the bridge opened with excitation provided by loaded 

trucks. The second test used ambient (typical traffic and wind) excitation. Signal 

processing analysis of the recorded acceleration time histories identified fundamental 

frequencies of the cables. Finite element models were developed for all cables using the 

as-built cable properties and compared to field test results showing good correlation. 

 

1.6. Scope of Work 
 

          The primary aim of this investigation is to evaluate the structural dynamic 

characteristics of the Owensboro cable-stayed bridge and to establish the baseline model 

of the bridge. Dynamics-based structural evaluation will be used. To achieve the goal, the 

scope of work will be divided into the following five parts: 
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(1). Conduct finite element modeling and modal analysis; 

(2). Extract the dynamic characteristics from on-site free vibration testing; 

(3). Calibrate the finite element model by the results of the field testing; 

(4). Conduct field tests of stay cables and finite element modeling of them; 

(5). Understand the structural behavior under service loadings and environmental 

dynamic loadings. 
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2. FIELD DYNAMIC TESTING 
 
 
2.1. General 
 

On-site dynamic testing of a bridge provides an accurate and reliable description 

of its real dynamic characteristics. There are three main types of dynamic bridge testing: 

 

 Forced Vibration Test 

 Free Vibration Test 

 Ambient Vibration Test 

 

 In the first two methods, the structure is excited by artificial means such as 

shakers, drop weights or testing vehicle. By suddenly dropping a load on the structure, a 

condition of free vibration is induced. The disadvantage of these methods is that traffic 

has to be shut down for a rather long time, especially for large structures such as long-

span bridges, and requires numerous test setups. It is clear that this can be a serious 

problem for bridges that have high traffic volumes. In contrast, ambient vibration testing 

does not affect the traffic on the bridge because it uses the traffic and wind as natural 

excitation. This method is obviously cheaper than forced vibration testing since no extra 

equipment is needed to excite the structure. However, relatively long records of response 

measurements are required and the measured data are more stochastic. Consequently, 

accurately identifying the system response modes is less accurate. 

 

Basically, the system identification procedure is carried out according to both 

input and output measurement data through the frequency response functions (FRFs) in 

the frequency domain or impulse response functions (IRFs) in the time domain. For civil 

engineering structures, the dynamic responses (output) are the direct records of the 

sensors that are installed at several locations. However, the input or excitation of the real 

structure in the operational condition often can be hardly realized. It is extremely difficult 

to measure the input excitation forces acting on a large-scale structure. Although forced 

excitations (such as heavy shakers and drop weights) and correlated input-output 
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measurements are sometime available, testing or structural complexity and achievable 

data quality restrict these approaches to dedicated applications. 

 

The output data-only dynamic testing has the advantage of being inexpensive 

since no equipment is needed to excite the structure. The ambient vibration is a kind of 

output data-only dynamic testing. The service state does not have to be interrupted by 

using this technique.  The output data-only dynamic testing has been successfully applied 

to many large scale cable-supported bridges such as the Golden Gate Bridge (Abdel-

Ghaffer and Scanlan 1985), the Quincy Bayview Bridge (Wilson and Gravelle 1991), the 

Fatih Sultan Mehmet Suspension Bridge (Brownjohn et al. 1992), the Tsing Ma 

Suspension Bridge (Xu et al. 1997), the Hitsuishijima Bridge, one of the Honshu-Shikoku 

Bridge (Okauchi et al. 1997), the Vasco da Gama Cable-Stayed Bridge (Cunha et al. 

2001), the Kap Shui Mun Cable-Stayed Bridge (Chang et al. 2001), and the Roebling 

Suspension Bridge (Ren et al. 2001). In the case of output data-only dynamic testing, 

only response data are measured while actual loading conditions are unknown. A system 

identification procedure will therefore need to base itself on output-only data. 

 

System Identification using output-only measurements presents a challenge 

requiring the use of special identification techniques, which can deal with very small 

magnitudes of ambient vibration contaminated by noise without the knowledge of input 

forces. There have been several output-only data system identification techniques 

available that were developed by different investigators or for different uses such as: 

peak-picking from the power spectral densities (Bendat and Piersol 1993), auto 

regressive-moving average (ARMA) model based on discrete-time data (Andersen et al. 

1996), natural excitation technique (NExT) (James et al. 1995), and stochastic subspace 

identification (Van Overschee and De Moor 1996; Peeters and De Roeck 2000). The 

mathematical background for many of these methods is often very similar, differing only 

from implementation aspects (data reduction, type of equation solvers, sequence of 

matrix operations, etc.). The benchmark study was carried out to compare system 

identification techniques for evaluating the dynamic characteristics of a real building on 

operation conditions from ambient vibration data (De Roeck et al. 2000). 
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For the Owensboro cable-stayed bridge, on-site free vibration tests have been 

conducted. The Owensboro cable-stayed bridge consists of a 1200’ main span, two 500’ 

side spans, 1345’ Kentucky approach and 960’ Indiana approach. The bridge has the 

width of 67’ with four 12’ traffic lanes and four 4’ shoulders. The output data-only 

dynamic testing and system identification of the Owensboro cable-stayed bridge are 

performed. The field dynamic testing was carried out just prior to opening the bridge in 

order to obtain the baseline dynamic characteristics of the bridge. Loaded trucks were run 

to excite dynamic responses from the bridge. The acceleration responses of 96 deck 

stations were recorded as trucks drove a high-speed pass. The modal characteristics of the 

bridge are extracted from the peak picking of the average normalized power spectral 

densities (ANPSDs) in frequency domain. The dynamic test results will be used to 

calibrate the finite element model and then to establish the baseline finite element model 

that reflects the built-up structural conditions for the long-term structural evaluation, 

damage identification and health monitoring of the bridge. 

 
2.2. Output-Only Dynamic Testing 
 

Just prior to opening the bridge, loaded trucks were run to excite dynamic 

responses from the bridge and the cables. Two loaded truck cases were used. The high-

speed test is the case where two loaded trucks, weighing 52,780 and 52,940 lbs drove a 

fast pass. 

 
The equipment used to measure the acceleration-time responses of 

instrumentation consisted of tri-axial accelerometers linked to its own data acquisition 

system. The system contained a Keithly MetraByte 1800HC digital recording strong 

motion accelerograph. Two units contained internal accelerometers, while the two 

remaining units were connected to Columbia Research Labs, SA-107 force balance 

accelerometers. The accelerometers are capable of measuring accelerations up to 2g’s at 

frequencies up to DC-50Hz. The data was stored in a personal computer for further 

processing. 

 
Sets of three accelerometers were mounted to aluminum blocks in orthogonal 

directions to form a tri-axial accelerometer station. A block was positioned at each station 
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with the accelerometers oriented in the vertical, transverse and longitudinal directions. To 

prevent any shifting of the accelerometers during testing, 25-pound bags of lead shot 

were laid on top of the accelerometer blocks once in position. To ensure the blocks were 

placed in level, adjustable feet and carpenters level were attached to each block. 

Accelerometers were connected to the data acquisition system by shielded cables. 

 

Measurement stations were chosen to be between two cable planes. Instruments 

were placed on the pavement due to the limited access to the actual floor beams. As a 

result, a total of 96 locations (48 points per side) were measured. A view on the 

measurement instrumentations is shown in Figure 2.1. Twenty four test setups are 

conceived to cover the planned testing area of the cable-stayed span of the bridge. A 

reference location, hereinafter referred as the base station, is selected based on the mode 

shapes from the preliminary finite element model. Each setup is composed of three base 

tri-axial accelerometer stations and four moveable tri-axial accelerometer stations. Each 

setup yields a total of twelve sets of data from moveable stations and nine sets of base 

station data. Table 2.1 shows the distribution of the different stations per setup. 

 

Testing began at the Owensboro side and progressed to the Rockport side. In each 

test set up, response data were measured for the high-speed test. Once the data were 

collected in one set up, the four moveable stations were then relocated to the next 

positions while the base stations remained stationary. This sequence was repeated twenty 

four times to get output-only measurements on all stations. The sampling frequency on 

site is chosen to be as high as 200 Hz to capture the short-time transient signals of the 

free vibration in full detail. The output-only measurement is simultaneously recorded for 

600 seconds at all accelerometers, which results in a total of 120,000 data points per 

channel. The typical acceleration records are as shown in Figure 2.2 for the high-speed 

test. 
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Figure 2.2 Typical Acceleration Time Histories 
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Table 2.1 Instrumentation Per Setup 
Setup Points measured 

1 D1, D2, U1, U2, U8, D23, U30 
2 D3, D4, U3, U4, U8, D23, U30 
3 D5, D6, U5, U6, U8, D23, U30 
4 D7, D8, U7, U8, U8, D23, U30 
5 D9, D10, U9, U10, U8, D23, U30 
6 D11, D12, U11, U12, U8, D23, U30 
7 D13, D14, U13, U14, U8, D23, U30 
8 D15, D16, U15, U16, U8, D23, U30 
9 D17, D18, U17, U18, U8, D23, U30 
10 D19, D20, U19, U20, U8, D23, U30 
11 D21, D22, U21, U22, U8, D23, U30 
12 D23, D24, U23, U24, U8, D23, U30 
13 D25, D26, U25, U26, U8, D23, U30 
14 D27, D28, U27, U28, U8, D23, U30 
15 D29, D30, U29, U30, U8, D23, U30 
16 D31, D32, U31, U32, U8, D23, U30 
17 D33, D34, U33, U34, U8, D23, U30 
18 D35, D36, U35, U36, U8, D23, U30 
19 D37, D38, U37, U38, U8, D23, U30 
20 D39, D40, U39, U40, U8, D23, U30 
21 D41, D42, U41, U42, U8, D23, U30 
22 D43, D44, U43, U44, U8, D23, U30 
23 D45, D46, U45, U46, U8, D23, U30 
24 D47, D48, U47, U48, U8, D23, U30 

                      U refers to upstream and D stands for downstream. 
 

2.3. Peak Picking (PP) System Identification 
 

The raw data from the output only testing displays a series of data that show the 

acceleration of the bridge in one of the three axial directions with respect to time, creating 

a time-history record of accelerations for the bridge. The raw data is not particularly 

useful for the dynamic analysis of the bridge and therefore must be transformed from the 

time domain into the frequency domain. The manner by which this was accomplished 

was the implementation of the Fourier Transform, which is mathematically defined using 

the transform equation: 

( ) ( )∫
∞

∞−

ω=ω dtetfF ti  
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where ( )tf  is a function of time, F(ω) is amplitude as a function of frequency, and ω is 

circular frequency (radians per second). The inverse of the Fourier Transform is defined 

by the equation: 

( ) ( )∫
∞

∞−

ω− ωω
π

= deFtf ti

2
1 . 

 

Using the equations above, any function that is a function of time can be 

converted into a function of frequency or vice versa. The only drawback associated with 

using these equations is that ( )tf  must be a continuous function, which does not fit the 

description of the piecewise nature of digitally sampled data such as obtained in the 

bridge testing. For this reason, a different form of Fourier Transform must be used, 

known as the Discrete Fourier Transform (DFT), which is useful when data point values 

are known at regularly spaced intervals, which lends itself nicely to the problem at hand.  

The Discrete Fourier Transform is defined by the equation: 

( )1...1,0
1

0

/2 −== ∑
−

=

π NnefF
N

k

Nikn
kn . 

where N is the number of sampled points and kf  is a set of N sampled points. The inverse 

form of the Discrete Fourier Transform is given by the equation: 

( )1...1,01 1

0

/2 −== ∑
−

=

π− NkeF
N

f
N

n

Nikn
nk . 

 

This set of equations is extremely useful for engineering applications such as this, 

but there are still some problems. These equations require 2N  complex mathematical 

operations which, even with modern computing power, can take quite some time even for 

small data sets. There is one other method that can reduce the computing time 

significantly. 

 

The Fast Fourier Transform (FFT), a numerical operation, can exploit the periodic 

and symmetric nature of trigonometric functions to greatly improve efficiency in 

comparison to the Discrete Fourier Transform. The number of computations for the Fast 
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Fourier Transform is reduced to ( )NN 2log , which is approximately 100 times faster than 

the Discrete Fourier Transform for a set of 1000 data points. 

 

The peak picking method is initially based on the fact that the frequency response 

function (FRF) goes through an extreme around the natural frequencies. In the context of 

vibration measurements, only the FRF is replaced by the auto spectra of the output-only 

data. In this way the natural frequencies are simply determined from the observation of 

the peaks on the graphs of the average response spectra. The average response spectra are 

basically obtained by converting the measured accelerations to the frequency domain by a 

Discrete Fourier Transform (DFT). The coherence function computed for two 

simultaneously recorded output signals has values close to one at the natural frequency. 

This fact also helps to decide which frequencies can be considered as natural. 

 

The peak picking algorithm, however, involves averaging temporal information, 

thus discarding most of their details. It has some theoretical drawbacks such as (1) 

picking the peaks is always a subjective task, (2) operational deflection shapes are 

obtained instead of mode shapes, (3) only real modes or proportionally damped structures 

can be deduced by the method, and (4) damping estimates are unreliable. In spite of these 

drawbacks, this method is most often used in civil engineering practice for ambient or 

free vibration measurements because it is fast and easy to apply. 

 

The data processing and modal identification are carried out by a piece of 

software known as DADiSP (Data Analysis and Display Software) version 2000 by DSP 

Development Corporation, Cambridge, Massachusetts, (DADiSP 2000). The time-history 

data was imported into the software. This software is useful for displaying, analyzing and 

manipulating large pieces of data, such as the 120,000+ points contained in each of the 

data files obtained. The software was also used to perform Fast Fourier Transforms on 

the imported data files. 

 

After picking the peaks from the combined spectral plot, the magnitudes of the 

FFT spectra from the moveable stations were divided by the magnitudes of the FFT 
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spectra from the base stations at each frequency to create a relative-magnitude plot for the 

bridge, relating the magnitudes at the moveable stations to those at the base station. The 

relative magnitudes for each point along the bridge were plotted at each of the picked-

peak frequencies to determine the mode shapes of the bridges. The mode shapes 

predicted by the field data were then compared to a preliminary finite-element model for 

verification. This sequence was repeated for all records in each of the vertical, transverse, 

and longitudinal direction. 

 

The average response spectra for all measurement data of the vertical and 

longitudinal directions are shown in Figures 2.3-2.4. The possible frequencies (peaks) of 

the vertical data and longitudinal data are summarized in Table 2.2 for the test.  

 

 
 

Figure 2.3 Full Data Averaged Vertical Response Spectra 

Frequency (Hz) 

Sp
ec

tru
m

 (g
2 /H

z)
 



Field Dynamic Testing 

 20

 

 
Figure 2.4 Full Data Averaged Longitudinal Response Spectra 

 
Table 2.2 Possible Frequencies for Testing (Hz) 

Vertical Longitudinal 
0.301667 0.301667 
0.388333 0.97 
0.601667 1.07833 
0.696667 1.175 

0.74 2.2533 
0.818333  
0.966667  
1.07167  
1.125  
1.165  

1.28333  
1.52667  
1.87167  
2.00833  

 
The identified frequencies are summarized in Table 2.3 for the high-speed test. 

Good mode shapes have also been extracted by the peak picking system identification 

method. The first vertical mode shapes are given in Figures 2.5. 
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Table 2.3 Summary of Identified Frequencies (Hz) 

Frequencies Modes 
0.301667 Vertical 
0.388333 Vertical 
0.601667 Vertical 
0.696667 Vertical 
0.74 Vertical 
0.818333 Vertical 
0.966667 Vertical + Longitudinal 
1.07167 Vertical 
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Figure 2.5 First Vertical Mode Shape of Owensboro Bridge 

(f = 0.301667 Hz) 
 
2.4. Remarks 
 

The following remarks can be made from the output-only dynamic testing of the 

Owensboro cable-stayed bridge: 

 

1. The modal parameters can be effectively extracted from output-only dynamic testing 

by using the frequency domain based peak picking (PP) method. 
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2. The peak picking identification is very fast and efficient since no model has to be 

fitted to the data. For real applications, the peak picking method could be used on site 

to verify the quality of the measurements. 

  

3. Ambient or free vibration testing provides a convenient, fast and cheap way to 

perform the bridge dynamic testing. 
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3. FINITE ELEMENT MODELING AND CALIBRATION 
 
 
3.1. General 
 

Modern cable-stayed bridges have been experiencing a revival since the mid-

1950s, while the concept of supporting a bridge girder by inclined tension stays can be 

traced back to the seventh century (Podolny and Fleming 1972). The increasing 

popularity of contemporary cable-stayed bridges among bridge engineers can be 

attributed to: (1) the appealing aesthetics; (2) the full and efficient utilization of structural 

materials; (3) the increased stiffness over suspension bridges; (4) the efficient and fast 

mode of construction; and (5) the relatively small size of the bridge elements. 

 

For the cable-stayed bridges, it was difficult to do accurate structural analysis. 

The commonly used classical theories for static analysis of cable-stayed bridges are the 

elastic theory and the deflection theory. The elastic theory is basically a linearized 

approximate theory, as it does not take into account the deformed configuration of the 

structure. Though the values of bending moment and shear yielded by the elastic theory 

are too high, it satisfies more safe design but not economy. This method is quite 

expeditious and convenient for preliminary designs and estimates. Basically, the elastic 

theory is sufficiently accurate for shorter spans or for designing relatively deep rigid 

stiffening systems that limit the deflections to small amounts. However, the elastic theory 

does not suit the designing of cable-stayed bridges with long spans, or large dead loads. 

The deflection theory, in contrast, is a more “exact” theory that takes into account the 

deformed configuration of the structure and results in a more economical and slender 

bridge. 

 

Nowadays, it is no longer a problem to accurately predict both the static and 

dynamic structural behavior of cable-stayed bridges. The finite element method of 

structural continua provides a convenient and reliable idealization of the structure and is 

particularly effective in digital-computer analysis. The finite element type of idealization 

is applicable to structures of all types. Thanks to rapid computer developments and the 
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accumulation of matrix analysis studies on nonlinear problems. The finite deformation 

theory with a discrete finite element model has been the most powerful tool used in the 

nonlinear analysis of cable-supported bridges. The applications of the finite deformation 

theory can include the effect of all nonlinear sources of cable-stayed bridges such as 

cables, large deflections, axial force and bending moment interaction. 

 

An important advantage of the finite element method is that structural 

complexities such as tower movements, cable extensibility, and support conditions, etc. 

can be considered effectively. The finite element method can also be used to analyze the 

effect of changes in different parameters, i.e., the parameter design. Two- or three- 

dimensional finite element models with beam and truss elements are often used to model 

both the superstructure and the substructure of cable-supported bridges (Nazmy and 

Abdel-Ghaffar 1990, Wilson and Gravelle 1991, Lall 1992, Ren 1999, Spyrakos et al. 

1999). Another advantage of the finite element method lies in its capability to do in-depth 

dynamic analysis. The dynamic characteristics of cable-supported bridges have been of 

particular interest since the collapse of the Tacoma Narrows Bridge in the State of 

Washington on November 7, 1940, as a result of wind action. Parametric studies on 

natural frequencies and modes (West et al. 1984) using a finite element formulation 

demonstrate the variation of the modal parameters of stiffened cable-supported bridges. 

The finite element method has been a unique way to do the dynamic response analysis of 

cable-supported bridges under the loadings of winds, traffics and earthquakes 

(Boonyapinyo et al. 1999, Abdel-Ghaffar and Rubin 1983, Abdel-Ghaffar and Nazmy 

1991, Ren and Obata 1999). 

 

This chapter describes the structural evaluation effort for the Owensboro cable-

stayed bridge by using finite element method. Details of a three-dimensional finite 

element model are presented. The analytical model of the Owensboro cable-stayed bridge 

is constructed in ANSYS, which is one of the most powerful engineering design and 

analysis software (ANSYS 6.1). The ANSYS is chosen because of the program’s 

significant capability to account for the cable stress stiffening and the pre-stressed modal 
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analysis capability. This model will be used for both static and dynamic analyses of the 

Owensboro cable-stayed bridge. 

 

In the finite element analysis, the influence of the dead load is considered by the 

static analysis under dead loads prior to application of the live loads or a dynamic 

analysis is carried out. The objective of the static analysis process is to achieve the 

deformed equilibrium configuration of the bridge under dead loads where the structural 

members are “pre-stressed”. A cable-stayed bridge is indeed a highly pre-stressed 

structure. Starting from the deformed equilibrium configuration, the modal analysis is 

followed. Consequently, the dead load effect on the stiffness can be included in the modal 

analysis; thereby, the modal analysis will be a “pre-stressed” modal analysis. 

 

Hence, the modal analysis of a cable-stayed bridge must include two steps: static 

analysis due to dead load and “pre-stressed” modal analysis. For a completed cable-

stayed bridge, the initial position of the cable and bridge is unknown. Only the final 

geometry of the bridge due to the dead load can be known by referring to the bridge 

plans. The initial geometry of the ideal finite element model of a cable-stayed bridge 

should be such that the geometry of a bridge does not change when a dead load is 

applied, since this is indeed the final geometry of the bridge as it stands. In other words, 

the deformed configuration of the bridge under the self-weight dead load should be close 

to the initial geometry input. In addition, the geometric nonlinear effect has been studied 

by including the stress stiffening and large deflection. All possible frequencies and mode 

shapes can be provided performing the pre-stressed modal analysis. A coupled mode can 

be included to give a comprehensive understanding of the dynamic behavior of the cable-

stayed bridges. Finite element (FE) model calibration, i.e., parametric studies, is also 

performed. The parameters include self-weight of the deck, the stiffness of cables, and 

bending stiffness of edge girders and center beams. The results of the modal analysis will 

be compared later with in-situ free vibration measurements to calibrate or update the 

initial finite element model. 

 

 



Finite Element Modeling and Calibration 

 26

3.2. Initial Finite Element Model 
 

 Since modern cable-stayed bridges involve a variety of decks, towers and cables 

that are connected together in different ways, the finite element method (FEM) is 

generally regarded as the most proper way for conducting the dynamic analysis. In FEM 

connection, the single-girder beam element model, the double-girder beam element 

model, the triple-girder beam element model, the shell element model and the thin-walled 

element model have been developed to model the bridge deck (Yang and McGuire 1986a, 

Yang and McGuire 1986b, Boonyapinyo et al.1994, Wilson and Gravelle 1991 and Zhu 

et al. 2000). Referring to Zhu et al.’s work, we choose the triple-girder beam element 

model to model the bridge deck. 

 

3.2.1. Primary Assumption 

 

A completely three-dimensional finite element model was established by using 

the finite element analysis software ANSYS version 6.1. The software ANSYS was able 

to account for the cable stress stiffening and the pre-stressed modal analysis. This model 

would be used for static and dynamic analyses of the Owensboro cable-stayed bridge. 

Due to the complexity and variations of such a cable-stayed bridge, there are too many 

uncertainties in both geometry and material. Some primary assumptions are made to 

establish the initial finite element model of the Owensboro cable-stayed bridge: 

 Towers: Assumed that the tower head consists of twelve beams, although the tower 

head is actually a continuous part along its height. 

 Edge girders: Assumed that two edge girders are completely continuous, although 

they are composed of eighteen different section properties. 

 

3.2.2. The Geometry of the Bridge 

 

After selecting an appropriate modeling methodology, serious considerations 

must be given to proper representation of the bridge geometry. These geometric issues 
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are directly related to the structural behavior. The consideration must include not only the 

global geometry of the bridge, but also local geometric characteristics of individual 

bridge members.  The geometry and member details are extracted from the plan of the 

Owensboro cable-stayed bridge. The plan referred is Kentucky Department of Highways, 

Indiana Department of Transportation; Daviess County, Kentucky – Spencer County, 

Indiana; U.S. 231 over the Ohio River and Indiana 66; Owensboro, Kentucky to 

Rockport, Indiana prepared by the Haworth, Meyer & Boleyn Consulting Engineers 

(1991). The drawing number is 22535. Table 3.1 shows the member details extracted 

from the plan.  

 
Table 3.1 Member Details Extracted from the Plan 

Member Reference 
Towers Sheets 90-110 
Cables Sheets 160-164 
Edge Girders Sheets 138-149 
Center beam Sheet 159 
Floor beams Sheets 158-158A 
Decks Sheets 165-186 

 

3.2.3. Element Types 

 

A cable-stayed bridge is a complex structural system. Each member of the bridge 

plays a different role. Different element types are therefore needed. In this FE model, two 

types of elements were chosen for modeling the different structural members. They are 

the 3-D elastic beam element (BEAM4), and 3-D tension-only truss element (LINK10). 

The theoretical background of each type of elements is briefly described below. 

 

3.2.3.1. BEAM4 Element 

 

BEAM4 element is a uniaxial 3-D elastic beam element with tension, 

compression, torsion and bending capabilities. The element has six degrees of freedom at 

each node: translations in x, y and z directions of the nodal and rotations about x, y and z 

axes of the nodal. BEAM4 element is defined by the cross-sectional geometrical 
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properties and the material properties of two nodes. The geometry, node locations and the 

coordinate system for this element are shown in Figure 3.1.  

 

 
 
 
 
 

 

 

 

 

 
 
 
 

 
Figure 3.1 BEAM4 3-D Elastic Beam Element 

 

The element stiffness matrix of the BEAM4 in local coordinates is 
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where 

A = cross-section area 

E = Young’s modulus 

L = element length 

G = shear modulus 

 I i  = moment of inertia normal to direction i 

 Jk  = torsional moment of inertia 

φ y  = 
12

2

EI
GA L

z

Z

 

φ z  = 
12

2

EI
GA L

y

y

 

Ai  = shear area normal to direction i 

 

The consistent mass matrix of BEAM4 element in local coordinates with the 

effect of rotary inertia but without the effect of shear deformation is 
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where 

ρ  = mass density 
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3.2.3.2. LINK10 Element 

 

LINK10 element is a uniaxial 3-D elastic truss element with tension-only (or 

compression-only) capability. With the tension-only option used here, the stiffness is 

removed if the element goes into compression (simulating a slack cable or slack chain 

condition). The feature is unique to model the cables of the Maysville cable-stayed 

bridge. The element has three degrees of freedom at each node: translations in x, y and z 

directions of the nodal. No bending of the element is considered. LINK10 3-D truss 

element is defined by the cross-sectional area, initial strain and material property of two 

nodes. The geometry, node locations and the coordinate system for this element are 

shown in Figure 3.2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.2 3-D Tension-only Truss Element 

 

The stiffness matrix of tension-only truss element in the local coordinate system is 
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where 

A = element cross-sectional area 

E = Young’s modulus 

L = element length 

C1 = 1.0 when tension; 10 106. ×  when compression. 

 

The consistent mass matrix of LINK10 element in the local coordinate system is 
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where 

 ρ = mass density 

 ε in  = initial strain (as an input)  

 

An important input property of the LINK10 elements that are aimed at modeling 

cable behavior is the initial strain. The initial strain is used for calculating the stress 

stiffness matrix for the first cumulative iteration. Stress stiffening should always be used 

for cable problems to provide numerical stability. The initial strain in the element is given 

by δ / L , where δ  is the difference between the element length L and the zero strain 

length 0L . 

 

3.2.4. Material Properties and Real Constants 

 

The basic materials used in the Owensboro cable-stayed bridge are the structural 

steel, concrete and high strength steel. The preliminary material constants used in the 

finite element model are shown in Table 3.2; furthermore, they follow the typical values 

of ASMT standards. 
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Table 3.2 Preliminary Material Properties 

Group 
No. 

Young’s 
modulus (lb/ft2) 

Poisson’s 
ratio 

Mass density 
(lb/ft3) Structural member 

1 4.176×109 0.3 490 Edge girders, Floor beams 
2 4.176×109 0.3 490 Center beam 
3 4.176×109 0.3 490 Cables 
4 6.358×108 0.2 150 Towers 
5 6.867×108 0.2 150 Decks 

 

The real constants consist of all necessary geometric properties of the cross-

section and initial strain if necessary. Depending on the element type, different real 

constants are considered as the input. All preliminary real constants used in the current 

model are summarized in Table 3.3. Real constants are based on the following facts of 

the main structural members. 

 

Edge Girder 

 

The edge girders are of the continuous type with an expansion bearing at each 

end, one fixed bearings at pier B, and one expansion bearing at pier C. Each edge girder 

consists of type I beams of eighteen different cross-sections. There are floor beams 

between two edge girders. 

 

Cables 

 

The cables are composed of 18 - 58 strands of high strength steel wire, each 

strand being 0.6 inches in diameter. These strands are parallel to each other, which are 

surrounded by PE pipe forming a single cable. The initial strains are obtained from the 

axial force of the bridge plans. 

 

Towers 

 

The towers are composed of shaft, lower legs, upper legs, tie strut and tower head. 

The tie strut is connected with the edge girders by two bearings. 
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Floor Beams and Center Beam 

 

In the cable-stayed spans, the reinforced concrete grid decks are supported by the 

frames which are composed of edge girders, floor beams and center beam. The floor 

beams are the type I structures with variable cross-sections. The center beam is a type I 

cross-sectional beam. 

Table 3.3 Preliminary Real Constants 

Inertia moment: (ft4) 
Type 

Cross-
section 

Area: (ft2) Izz Iyy 
Initial strain Structural member 

1 1.5234 30.9475 0.25233 - Edge girder 
2 1.7734 33.983 0.25288 - Edge girder 
3 0.9922 4.3274 0.25209 - Edge girder 
4 1.04427 4.4394 0.25222 - Edge girder 
5 0.9401 4.215 0.25199 - Edge girder 
6 1.0964 4.55105 0.25238 - Edge girder 
7 1.1198 4.7361 0.26226 - Edge girder 
8 0.96354 4.4046 0.26188 - Edge girder 
9 1.0677 4.62575 0.26211 - Edge girder 
10 1.01562 4.51527 0.26198 - Edge girder 
11 1.11979 5.08067 0.31623 - Edge girder 
12 1.27083 6.0398 0.39026 - Edge girder 
13 0.91667 4.01716 0.24211 - Edge girder 
14 0.96875 4.13183 0.24221 - Edge girder 
15 1.02083 4.2459 0.24233 - Edge girder 
16 1.0729 4.3594 0.24249 - Edge girder 
17 1.01562 4.6952 0.28901 - Edge girder 
18 1.11979 4.92278 0.28924 - Edge girder 
19 0.18758 0.03094 0.0015 - Center beam 
20 0.3919 0.02483 1.6034 - Floor beam 
21 83 2486.3 2870.25 - Tower (lower) 
22 64.5 1894.4 638.6 - Tower (upper) 
23 58.5 613.9 1829.2 - Tower (tie strut) 
24 159.36 3399.7 1317.4 - Tower (head) 
25 142.72 3044.7 946.3 - Tower (head) 
26 128 2730.67 682.67 - Tower (head) 
27 126.72 2703.36 662.4 - Tower (head) 
28 122 2602.67 591.1 - Tower (head) 
29 121.28 2587.3 580.7 - Tower (head) 
30 52 69 732 - Tower-edge girder 
31 0.059722 - - 3.613E-03 Cables 1 & 48 
32 0.058229 - - 3.5285E-03 Cables 2 & 47 



Finite Element Modeling and Calibration 

 34

Table 3.3 Continued Preliminary Real Constants 

Inertia moment: (ft4) 
Type 

Cross-
section 

Area: (ft2) Izz Iyy 
Initial strain Structural member 

33 0.086597 - - 3.7096E-03 Cables 3 & 46 
34 0.044792 - - 3.5552E-03 Cables 4 & 45 
35 0.050764 - - 3.6605E-03 Cables 5 & 44 
36 0.047778 - - 3.744E-03 Cables 6 & 43 
37 0.044792 - - 3.6995E-03 Cables 7 & 42 
38 0.041806 - - 2.2396E-03 Cables 8 & 41 
39 0.038819 - - 1.8568E-03 Cables 9 & 40 
40 0.035833 - - 1.9514E-03 Cables 10 & 39 
41 0.026875 - - 2.0494E-03 Cables 11 & 38 
42 0.037326 - - 1.0586E-03 Cables 12 & 37 
43 0.037326 - - 1.1035E-03 Cables 13 & 36 
44 0.026875 - - 2.0226E-03 Cables 14 & 35 
45 0.035833 - - 2.0115E-03 Cables 15 & 34 
46 0.037326 - - 2.1107E-03 Cables 16 & 33 
47 0.040313 - - 2.1563E-03 Cables 17 & 32 
48 0.043299 - - 2.179E-03 Cables 18 & 31 
49 0.047778 - - 2.4008E-03 Cables 19 & 30 
50 0.050764 - - 2.3303E-03 Cables 20 & 29 
51 0.05375 - - 2.0271E-03 Cables 21 & 28 
52 0.058229 - - 2.5415E-03 Cables 22 & 27 
53 0.056736 - - 3.3491E-03 Cables 23 & 26 
54 0.074653 - - 3.4066E-03 Cables 24 & 25 

 

3.2.5. Details of the Model 

  

A detailed 3-D finite element model of the bridge is developed. This model was 

used for both the static and dynamic analysis of the bridge. The main structural members 

of the Owensboro cable-stayed bridge are the edge girders, cables, floor beams, center 

beam, decks and towers that are discretized by different finite elements. The finite 

elements used for modeling the bridge are described below. 

 

Modeling of the cable is possible in the ANSYS by employing the tension-only 

truss elements and utilizing its stress stiffening capability. The element is nonlinear and 

requires an iteration solution. All cable members of the Owensboro cable-stayed bridge 

are designed to sustain the tension force only and hence modeled by 3-D tension-only 
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truss elements (LINK10) but the section properties are different. Each cable between the 

edge girder and the tower are modeled as a single finite element. The stiffness is removed 

with this element if the element goes into compression. Both stress stiffening and large 

displacement capability are available. The stress stiffening capability is needed for 

analysis of structures with a low or non-existing bending stiffness as is the case with 

cables.  Hence, an important feature input for this element is the initial strain in the 

element. This initial strain is used in calculating the stress stiffness matrix for the first 

cumulative iteration. In the model, initial strains are the final stay tension that is from the 

part 4 in this report. 

 

The columns, heads and struts of the towers are modeled as 3-D elastic beam 

elements (BEAM4). The large deflection capability of 3-D elastic beam elements is 

available. 

 

The edge girders and center beams are modeled as 3-D elastic beam elements 

(BEAM4) because of their continuous natural across many panels. The floor beams are 

also modeled as 3-D elastic beam elements (BEAM4) to provide tension, compression, 

bending and torsion stiffness. 

 

The aforementioned bridge deck is presented with a triple-girder model. In the 

triple-girder model, a central girder, i.e. the center beam, is located at the centroid of the 

original bridge deck. Two side girders, i.e., the edge girders, of the same section 

properties are symmetrically located at the corresponding cable planes. The decks may be 

distributed over these three girders in the model. For the triple-girder model, we may 

obtain the equivalent mass and stiffness of the central girder and two side girders by 

referring to Zhu et al.’s work (2000). In the triple-girder model, the transverse connection 

between the central girder and the side girder is generally simplified as the rigid link. In 

the current model, the stiffness of the floor beam may be properly raised by increasing 

the elastic modulus. 
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In addition, the fixed bearings and expansion bearings that connect the edge 

girders and towers are modeled as 3-D elastic beam elements (BEAM4) with larger 

bending stiffness. For the purpose of latter parametric study and model calibration 

through in-situ dynamic testing, all material properties and real constants that reflect 

effectively the properties of individual structural members are listed in Tables 3.4 and 

3.5, respectively. The initial strains in Table 3.5 are obtained by considering the initial 

tension forces in the cables listed in Table 3.7. 

 

Table 3.4 Material Properties 

Group 
No. 

Young’s 
modulus (lb/ft2) 

Poisson’s 
ratio 

Mass density 
(lb/ft3) Structural member 

1 6.358×108 0.2 150 Towers 
2 4.176×109 0.3 490 Cables 
3 4.176×109 0.3 710.5 Edge girders 
4 4.176×109 0.3 695.1 Edge girders 
5 4.176×109 0.3 752.3 Edge girders 
6 4.176×109 0.3 747.5 Edge girders 
7 4.176×109 0.3 757.3 Edge girders 
8 4.176×109 0.3 742.9 Edge girders 
9 4.176×109 0.3 740.9 Edge girders 
10 4.176×109 0.3 755.1 Edge girders 
11 4.176×109 0.3 745.4 Edge girders 
12 4.176×109 0.3 750.2 Edge girders 
13 4.176×109 0.3 740.9 Edge girders 
14 4.176×109 0.3 728.6 Edge girders 
15 4.176×109 0.3 759.6 Edge girders 
16 4.176×109 0.3 754.5 Edge girders 
17 4.176×109 0.3 749.7 Edge girders 
18 4.176×109 0.3 745 Edge girders 
19 4.176×109 0.3 750.2 Edge girders 
20 4.176×109 0.3 740.9 Edge girders 
21 4.176×109 0.3 886.2 Center beam 
22 4.176×1012 0.3 490 Floor beams 
23 4.176×109 0.3 490 Bearings 
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Table 3.5 Real Constants 

Inertia moment: (ft4) 
Type 

Cross-
section 

Area: (ft2) Izz Iyy 
Initial strain Structural member 

1 3.33 35.031 0.25233 - Edge girder 
2 3.58 38.066 0.25288 - Edge girder 
3 2.7988 8.4107 0.25209 - Edge girder 
4 2.8508 8.5227 0.25222 - Edge girder 
5 2.7467 8.2983 0.25199 - Edge girder 
6 2.903 8.6344 0.25238 - Edge girder 
7 2.9264 8.8194 0.26226 - Edge girder 
8 2.7701 8.4879 0.26188 - Edge girder 
9 2.8743 8.7091 0.26211 - Edge girder 
10 2.8222 8.5986 0.26198 - Edge girder 
11 2.9264 9.164 0.31623 - Edge girder 
12 3.0774 10.123 0.39026 - Edge girder 
13 2.7232 8.1005 0.24211 - Edge girder 
14 2.7753 8.2152 0.24221 - Edge girder 
15 2.8274 8.3292 0.24233 - Edge girder 
16 2.8795 8.4427 0.24249 - Edge girder 
17 2.8222 8.7785 0.28901 - Edge girder 
18 2.9264 9.0061 0.28924 - Edge girder 
19 7.4139 98.031 5448.7 - Center beam 
20 0.3919 0.02483 1.6034 - Floor beam 
21 83 2486.3 2870.2 - Tower (lower) 
22 64.5 1894.4 638.6 - Tower (upper) 
23 58.5 613.9 1829.2 - Tower (strut) 
24 159.36 3399.7 1317.4 - Tower (head) 
25 142.72 3044.7 946.31 - Tower (head) 
26 128 2730.7 682.67 - Tower (head) 
27 126.72 2703.4 662.4 - Tower (head) 
28 122 2602.7 591.1 - Tower (head) 
29 121.28 2587.3 580.7 - Tower (head) 
30 52 69 732 - Bearing 
31 0.059722 - - 3.6130E-03 Cables 1 & 49 
32 0.058229 - - 3.5285E-03 Cables 2 & 50 
33 0.086597 - - 3.7096E-03 Cables 3 & 51 
34 0.044792 - - 3.5552E-03 Cables 4 & 52 
35 0.050764 - - 3.6605E-03 Cables 5 & 53 
36 0.047778 - - 3.7440E-03 Cables 6 & 54 
37 0.044792 - - 3.6995E-03 Cables 7 & 55 
38 0.041806 - - 2.2396E-03 Cables 8 & 56 
39 0.038819 - - 1.8568E-03 Cables 9 & 57 
40 0.035833 - - 1.9514E-03 Cables 10 & 58 
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Table 3.5 Continued Real Constants 

Inertia moment: (ft4) 
Type 

Cross-
section 

Area: (ft2) Izz Iyy 
Initial strain Structural member 

41 0.026875 - - 2.0494E-03 Cables 11 & 59 
42 0.037326 - - 1.0586E-03 Cables 12 & 60 
43 0.037326 - - 1.1035E-03 Cables 13 & 61 
44 0.026875 - - 2.0226E-03 Cables 14 & 62 
45 0.035833 - - 2.0115E-03 Cables 15 & 63 
46 0.037326 - - 2.1107E-03 Cables 16 & 64 
47 0.040313 - - 2.1563E-03 Cables 17 & 65 
48 0.043299 - - 2.1790E-03 Cables 18 & 66 
49 0.047778 - - 2.4008E-03 Cables 19 & 67 
50 0.050764 - - 2.3303E-03 Cables 20 & 68 
51 0.053750 - - 2.0271E-03 Cables 21 & 69 
52 0.058229 - - 2.5415E-03 Cables 22 & 70 
53 0.056736 - - 3.3491E-03 Cables 23 & 71 
54 0.074653 - - 3.4066E-03 Cables 24 & 72 
55 0.074653 - - 3.4066E-03 Cables 25 & 73 
56 0.056736 - - 3.3491E-03 Cables 26 & 74 
57 0.058229 - - 2.5415E-03 Cables 27 & 75 
58 0.053750 - - 2.0271E-03 Cables 28 & 76 
59 0.050764 - - 2.3303E-03 Cables 29 & 77 
60 0.047778 - - 2.4008E-03 Cables 30 & 78 
61 0.043299 - - 2.1790E-03 Cables 31 & 79 
62 0.040313 - - 2.1563E-03 Cables 32 & 80 
63 0.037326 - - 2.1107E-03 Cables 33 & 81 
64 0.035833 - - 2.0115E-03 Cables 34 & 82 
65 0.026875 - - 2.0226E-03 Cables 35 & 83 
66 0.037326 - - 1.1035E-03 Cables 36 & 84 
67 0.037326 - - 1.0586E-03 Cables 37 & 85 
68 0.026875 - - 2.0494E-03 Cables 38 & 86 
69 0.035833 - - 1.9514E-03 Cables 39 & 87 
70 0.038819 - - 1.8568E-03 Cables 40 & 88 
71 0.041806 - - 2.2396E-03 Cables 41 & 89 
72 0.044792 - - 3.6995E-03 Cables 42 & 90 
73 0.047778 - - 3.7440E-03 Cables 43 & 91 
74 0.050764 - - 3.6605E-03 Cables 44 & 92 
75 0.044792 - - 3.5552E-03 Cables 45 & 93 
76 0.086597 - - 3.7096E-03 Cables 46 & 94 
77 0.058229 - - 3.5285E-03 Cables 47 & 95 
78 0.059722 - - 3.6130E-03 Cables 48 & 96 
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The finite element model of the Owensboro cable-stayed bridge totally consists of 

668 nodes and 1087 finite elements that include 991 BEAM4 elements and 96 LINK10 

elements. As a result, the number of active degree of freedom (DOF) is 3960. The details 

of the model such as element types, material types and real constant types are 

summarized in Table 3.6 for individual structural members. The detailed 3-D finite 

element models are shown in Figures 3.3-3.5. 

 

Table 3.6 Details of the Model 

Member Element 
Type 

Material 
Type 

Real Constant 
Type 

Edge girder BEAM4 3-20 1 - 18 

Floor beam BEAM4 22 20 

Center beam BEAM4 21 19 

Tower upper leg BEAM4 1 22 

Tower lower leg BEAM4 1 21 

Tower tie strut BEAM4 1 23 

Tower head BEAM4 1 24-29 

Cable LINK10 2 31 - 78 

Bearing BEAM4 23 30 
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Full Elevation 
 
 

 
 
 

Part Elevation – Tower and Cables 
 

Figure 3.3 Elevation of Finite Element Model 
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Part Elevation – Central Span 
 

Figure 3.3 Continued Elevation of Finite Element Model 
 
 
 

 
Full Plan 

 
 

 
 

Part Plan – Tower, Edge Girders, Center Beam and Floor Beams 
 
 

 
 

Part Plan – Central Span, Edge Girders, Center Beam and Floor Beams 
 
 

Figure 3.4 Plan of Finite Element Model 
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Full Elevation – Isotropic 
 
 
 
 

 
 
 
 

Part Elevation – Tower and Cables 
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Part Elevation – Central Span 
 

Figure 3.5 Isotropic Elevation of Finite Element Model 
 
3.2.6. Boundary Conditions 
 

The boundary conditions of an actual bridge are always complex but are often 

idealized as fixes, hinges and rollers in the analytical model. In current model, the towers 

of the Owensboro cable-stayed bridge are treated as being fixed in all degrees-of-freedom 

at the bases. The north and south ends of the deck are connected to the approaches by a 

tension-link mechanism that permits the end of the deck to rotate freely about the vertical 

(y) and transverse (z) axes. Rotation about the longitudinal axis (x) and all three 

translational degree of freedom are modeled as fixed at each end of the deck. 

 

The connection of the deck to the towers presented a special challenge to the 

development of the finite element model. For the connection of the deck to the towers, 
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the deck-tower bearings are simulated using two rigid vertical links. These two links are 

used to connect two edge girders to the tower tie strut. In order to restrain the relative 

motions between deck and tower, the relative three translational motions and two 

rotations about longitudinal (x) and vertical (y) axes between deck and tower are coupled; 

the only relative motion possible is a free rotation of the deck with respect to the tower 

cross-beam, about the z axis. 

 

3.3. Static Analysis under Dead Load 

 

In the design of cable-stayed bridges, the dead load often contributes most of 

bridge loads. The dead load has a significant influence on the stiffness of a cable-stayed 

bridge. In the finite element analysis, this influence can be considered by the static 

analysis under dead loads before the live load or dynamic analysis is carried out. The 

objective of the static analysis process is intended to achieve the deformed equilibrium 

configuration of the bridge due to dead loads in which the structural members are “pre-

stressed”. After doing the deformed equilibrium configuration, the real analysis is 

followed. Consequently, the dead load effect on the stiffness is included in the analysis. 

 

For the static analysis of the Owensboro cable-stayed bridge under dead loads, the 

dead load value of the deck can be given by considering the volume of the deck and the 

density of the concrete. Actually, the deck loads are transferred from the edge girders, 

center beams and floor-beams to the stayed cables and towers. Thus in the finite element 

analysis, the dead load is equivalently distributed to the center beam and the two edge 

girders. 

 

The capabilities of the static analysis procedure in the ANSYS include large 

deflections (geometrically nonlinear analysis) and stress stiffening. Since the structure 

involves non-linearity, an iterative solution associated with the Newton-Raphson solution 

procedure is required. 
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3.3.1. Initial Tension in the Cables 
 

A cable-stayed bridge directly derives its stiffness from the cable tension. The 

final geometry of the bridge due to the dead load is known from the drawing of the 

Owensboro cable-stayed bridge plans. Referring to the drawing, we have modeled the 

initial geometry of the bridge, which is really the shape of the bridge under the dead load. 

Actually, the bridge deck was stayed piece by piece from the cable. And thus the cable 

stretched and deflected down until almost all of the deck was stayed from the cables, 

resting on each end on the towers. 

 

It turns out that the ideal finite element model of a cable-stayed bridge should be 

such that on application of the dead load, the geometry of the bridge does not change; this 

is indeed the final geometry of the bridge. In other words, the deformed configuration of 

the bridge under the self-weight should be as close to the initial geometry. This can be 

approximately realized by manipulating the initial tension force in the cables that is 

specified as an input quantity (pre-strain) in the cable elements. Hence, the bridge can be 

modeled in the final geometry with a pre-tension force in the cables. In such a way, the 

initial tension force in the cables plays an important role. The initial tension force in the 

cables can be obtained by the testing. The initial tension forces in the cables of the model 

are listed in the table 3.7 from the chapter 4, Cable Testing and Modeling. 

 

Table 3.7 Initial Tension Forces in the Cables 

Cable 
Number 

Cable Designs’ 
Axial Force 

(kips) 

Final Stay Tension 
Dead Load Only 

Upstream Cable (kips) 

Final Stay Tension 
Dead Load Only 

Downstream Cable (kips) 
1 901 N/A N/A 
2 881 845 871 
3 1316 1366 1317 
4 612 659 671 
5 713 714 838 
6 654 768 726 
7 591 713 671 
8 388 391 N/A 
9 388 301 N/A 
10 305 301 283 
11 230 N/A N/A 
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Table 3.7 Continued Initial Tension Forces in the Cables 

Cable 
Number 

Cable Designs’ 
Axial Force 

(kips) 

Final Stay Tension 
Dead Load Only 

Upstream Cable (kips) 

Final Stay Tension 
Dead Load Only 

Downstream Cable (kips) 
12 152 146 165 
13 150 164 172 
14 227 N/A N/A 
15 298 301 213 
16 330 329 311 
17 370 363 311 
18 413 384 394 
19 471 479 449 
20 506 494 449 
21 523 447 455 
22 604 618 596 
23 624 737 850 
24 957 1062 1062 
25 550 458 452 
26 623 613 639 
27 601 585 560 
28 519 468 498 
29 502 466 422 
30 483 500 435 
31 417 422 407 
32 366 N/A 411 
33 327 N/A N/A 
34 300 219 260 
35 227 255 283 
36 150 143 184 
37 152 156 156 
38 236 255 255 
39 305 246 N/A 
40 383 477 477 
41 390 394 338 
42 478 425 394 
43 474 466 477 
44 653 597 602 
45 615 658 616 
46 1311 1290 1313 
47 888 846 910 
48 901 N/A N/A 
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3.3.2. Geometric Non-linearity 

 

For the static analysis, it is well known that a long span cable-stayed bridge 

exhibits geometrically nonlinear characteristics that are reflected in the nonlinear load-

deflection behavior under any load conditions. These geometrically nonlinear sources 

may come from 

 

 The large deflection effect due to changes in geometry; 

 The combined axial load and bending moment interaction effect; 

 The sag effect due to changes in cable tension load levels. 

 

In the structural analysis for small deflection, the geometric change of the 

structure is always assumed to be small and can be neglected so that all quantities, such 

as force and deformation, are determined by the original configuration of the structure. In 

such a case, the overall stiffness of the structure in the deformed configuration is assumed 

to be equal to the stiffness of the un-deformed configuration, in order to make the 

analysis simpler. However, a large deflection solution is required whenever the 

displacements are large enough so that the structural stiffness matrix based on the initial 

geometry does not characterize the deformed structure. Since cable-stayed bridges are 

highly flexible structural system, the displacements under normal working loads are 

deemed to be large enough to warrant a nonlinear analysis that accounts for the rigid 

body motion of the structure. The geometric change can be no longer neglected. In this 

case, the bridge stiffness must be always updated in the simultaneous deformed 

configuration. Due to this simultaneous deformed configuration is also an unknown, the 

iteration techniques should be used. 

 

In the ANSYS, the capability for large deflection analysis is available for most of 

the structural element types. The large deflection is accounted for by reorienting the 

stiffness into its new configuration through updating the nodal locations. In the 

geometrically nonlinear analysis, the deformations are characterized by the large 

displacements and large rotations, but small strains. This is consistent with the fact that 
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most of structures behave. The total Lagrange (T.L.) formulation is employed in which 

the basic working variable is the total displacement vector rather than the incremental 

displacement vector as the updated Lagrange (U.L.) formulation does. 

 

The main girders and towers of a cable-stayed bridge are often the structural 

members subjected to both the axial force and the bending moment. In the linear 

structural analysis, the axial stiffness and the flexural stiffness are considered to be 

uncoupled. However, if the deformations are no longer small, these structural members 

are subjected to an interaction between the axial force (tension or compression) and the 

bending moment. The additional bending moment would be caused by a simultaneously 

axial force applied due to the lateral deformation of a bending member and the flexural 

stiffness of the member would be altered. As a result, the effective bending stiffness of 

the member will decrease for a compressive axial force and increase for a tensile axial 

force. On the other hand, the presence of bending moments will affect the axial stiffness 

of the member due to an apparent shortening of the member caused by bending 

deformations. For the case of cable-stayed bridges, the large deformation may occur. The 

interaction between the axial force and the bending moment might be significant and 

should be considered. This effect can be included in the geometric stiffness matrix by 

using geometrically nonlinear analysis. 

 

For a cable, supported at its ends and subjected to its own weight and an 

externally applied axial force, it sags into the shape of a catenarian. The axial stiffness of 

the cable varies nonlinearly as a function of cable tension force, which in turn changes 

with the distance of cable ends. For conventional truss members the sag due to self-

weight can be ignored but for cable members this sag should be considered for the 

accurate analysis. Indeed, the sag phenomenon of individual cables results in 

geometrically nonlinear behavior of cable-stayed bridges. The sagging cable problem 

needs an explicit stress stiffness matrix included in the mathematical formulation to 

provide numerical stability. Basically, the cable sag effect can be included by introducing 

axial strains in the cables and running a static stress-stiffening analysis to determine an 

equilibrium configuration where the cables are “pre-stressed”. 
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The cable sag can be accounted for in the ANSYS by employing the tension-only truss 

element and utilizing its stress-stiffening capability in conjunction with a large deflection 

analysis. The stress stiffening is an effect that causes a stiffness change in the element due to 

the loading or stress within the element. The stress-stiffening capability is needed for the 

analysis of structures with a low or non-existent bending stiffness as is the case with cables. 

Physically, the stress-stiffening represents the coupling between the in-plane and transverse 

deflections within the structure. This coupling is the mechanism used by thin flexible 

structures to carry the lateral loads. As the in-plane tensile force increases, the capacity to 

assume the lateral loads increases. In other words, the transverse stiffness increases as the 

tensile stress increases. More details can be found in the ANSYS references. 

 

The finite element model described previously is used here to reveal the large 

deflection effect on the structural behavior of the Owensboro cable-stayed bridge due to 

the dead load. Table 3.8 shows the comparison of the maximum deck deflection between 

small deflection analysis and large deflection analysis. It is clearly shown that the large 

deflection has almost no effect on the deck deflection due to dead load alone. This is 

consistent with the observation that the maximum deck deflection of the bridge is very 

limited (about 0.008 feet) due to introducing the pre-strain in the cables in which the 

bridge becomes quite stiffening. Further comparison between small deflection analysis 

and large deflection analysis without introducing the cable pre-strain, as shown in Table 

3.8, has demonstrated that the large deflection does not change the deck deflection 

significantly even though the maximum deck deflection of the bridge is about 7 feet. 

Therefore, the large deflection analysis is not necessary in determining the initial 

equilibrium configuration of the bridge due to dead load and the small deflection analysis 

is enough in the current finite element model. But the stress stiffening must be always 

included in the static analysis of cable-supported bridges and hence the static analysis of 

a cable-stayed bridge is always geometrically nonlinear. 
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Table 3.8 Comparison of Maximum Deflections (absolute value, ft) 

Analysis type With cable pre-strain Without cable pre-strain 

Small deformation 0.308001 6.874 

Large deformation 0.315789 7.293 
 

In the finite element modeling of a cable-stayed bridge, it is quite natural to 

discretize the cable between the tower and the girder into a single tension-only truss 

element (cable element). But two node cable elements, as we know, are relatively weak 

elements. However, since two end nodes of the cable element are connected with the 

beam elements of the tower and the girder, the nonlinear static analysis or the modal 

analysis can be carried out. Another key feature in the nonlinear structural analysis is the 

choice of convergence criterion to control the iteration procedure. The defaulted force 

convergence criterion in the ANSYS cannot provide an efficient iteration solution in the 

large deflection analysis of the Owensboro cable-stayed bridge. Sometimes the force 

convergence criterion results in the divergence especially when the structural deflection 

reaches slightly large. Instead, the displacement convergence criterion is very effective 

and always results in the convergent solution. In addition, as mentioned previously the 

stress stiffening plays an important role in the static analysis of cable-stayed bridges. The 

sagging of the cable requires the stress part in the stiffness matrix and results in the 

nonlinear analysis. Stress stiffening must be always used for sagging cable problem to 

provide numerical stability. Using a large deformation solution without the stress 

stiffening capability leads to an aborted run due to divergent oscillation. 

 

3.4. Modal Analysis 
 

Cable-stayed bridges are more flexible than other structures because of large 

spans. One important aspect of such a flexible structure is a large displacement response 

of the deck when subject to dynamical loads. As a result, considerable amount of work 

has been conducted to study the dynamic behavior of cable-stayed bridges as a part of the 

design of wind and seismic resistance. The dynamic characteristics of a structure can be 

effectively analyzed in terms of natural frequencies and mode shapes. Modal analysis is 

needed to determine the natural frequencies and mode shapes of the entire cable-stayed 
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bridge. The natural frequencies and mode shapes of the Owensboro cable-stayed bridge 

are studied by using the current finite element model. Since the established model is a 3-

D finite element model, a general modal analysis is capable to provide all possible modes 

of the bridge (transverse, vertical, torsion and coupled). 

 

The modal analysis needs to solve the eigenvalue problem. The eigenvalue and 

eigenvector extraction technique used in the analysis is the Block Lanczos method. The 

Block Lanczos eigenvalue extraction method is available for large symmetric eigenvalue 

problems. Typically, this solver is applicable to the type of problems solved using the 

Subspace eigenvalue method, however, at a faster convergence rate. The Block Lanczos 

algorithm is basically a variation of the classic Lanczos algorithm, where the Lanczos 

recursions are performed using a block of vectors as opposed to a single vector. 

Additional theoretical details on the classic Lanczos method can be found in any 

textbooks on eigenvalue extraction. 

 

3.4.1. Effect of Initial Equilibrium Configuration 
 

As mentioned previously, the modal analysis of a cable-stayed bridge should 

include two steps: the static analysis loaded by the dead load and then followed by pre-

stressed modal analysis. This kind of pre-stressed modal analysis is available in the 

ANSYS.  In order to investigate the effect of initial equilibrium configuration due to the 

dead load and the pre-strain in the cables on the dynamic properties of the Owensboro 

cable-stayed bridge, the following three cases are considered: 

 

• Case 1: the regular modal analysis without dead load effect where the modal analysis 
is starting from the undeformed configuration; 

• Case 2: the pre-stressed modal analysis where the modal analysis follows a dead-load 
linear static analysis without the pre-strain in the cables; 

• Case 3: the pre-stressed modal analysis where the modal analysis follows a dead-load 
linear static analysis with a pre-strain in the cables.  
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Table 3.9 Comparison of Frequencies (Hz) 

Mode Order Case 1 Case 2 Case 3 
1 0.28734 0.27731 0.29340 
2 0.36567 0.34474 0.37361 
3 0.52123 0.51331 0.52464 
4 0.57663 0.55339 0.57900 
5 0.66805 0.65227 0.67505 
6 0.68444 0.67572 0.68530 
7 0.70278 0.68387 0.71035 
8 0.75283 0.73816 0.75806 
9 0.76331 0.75064 0.76662 
10 0.80528 0.78958 0.80814 
11 0.81653 0.79268 0.81632 
12 0.81871 0.81216 0.82163 
13 0.90322 0.89117 0.90517 
14 0.95013 0.91627 0.95383 
15 0.95547 0.91843 0.95833 
16 1.0843 1.0498 1.0873 
17 1.1043 1.0746 1.1061 
18 1.1425 1.1071 1.1381 
19 1.1434 1.1078 1.1483 
20 1.2276 1.1955 1.2283 

 
The comparison results of frequencies among above three cases are summarized 

in Table 3.9. It is clearly shown that the beneficial effect of self-weight is used in 

improving stiffness. The cable-stayed bridge with sufficient amount of pre-strain in the 

cables is a highly pre-stressed structure. In the current case of the Owensboro cable-

stayed bridge, the dead load effect will increase the natural frequency due to the 

stiffening of the structure. Therefore, the regular modal analysis without a dead-load 

static analysis will result in the under-estimation of the cable-stayed bridge capacity and 

consequently provides more safe evaluation of the bridge capacity. 

 

Furthermore, compared with Case 2 and Case 3, the pre-strain in the cables 

increases the natural frequencies of the cable-stayed bridge if the pre-stressed modal 

analysis is used. It implies that it is the self-weight not the initial equilibrium 

configuration starting the vibration contributes the stiffness improvement because the 

pre-strain in the cables changes the initial equilibrium configuration and the distribution 
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of the pre-stress due to dead load. But the initial equilibrium configuration to start the 

vibration is obviously essential to the dynamic responses under wind or seismic loadings. 

 

3.4.2. Modal Analysis Results 
 

To make the results close to the real situation, the pre-stressed modal analysis 

starting from the dead-load deformed equilibrium configuration with a pre-strain in the 

cables is performed here to evaluate the modal properties of the Owensboro cable-stayed 

bridge. The natural frequencies, mass distribution percentages and modal participation 

factors are summarized in Tables 3.10-11, respectively. The participation factor of 

particular mode demonstrates the importance of that mode. The mass fraction expresses 

the whole mass participation percentages before that mode. The table of the participation 

factor and mass distribution percentage is available in the ANSYS to provide the list of 

participation factors, mode coefficients and mass distribution percentages for each mode 

extracted. The participation factors and mode coefficients are calculated based on an 

assumed unit displacement spectrum in each of the global Cartesian directions. 

 

In general, several modes of vibration contribute to the total dynamic response of 

the structure. For the purpose of directional uncertainty and the simultaneous occurrence 

of forces in the three orthogonal directions, coupling effects within each mode of 

vibration should be considered. Coupling effects, however, make it difficult to categorize 

the modes into simple vertical, transverse, or torsion, thus making comparisons with 

experimental measurements difficult. Most of studies are aimed to analyze the modal 

behavior of cable-stayed bridges in terms of pure vertical, transverse and torsion modes 

of vibration. Since the Owensboro cable-stayed bridge is modeled as a complete 3-D 

structure, all possible coupled modes can be obtained. It provides the full understanding 

of the dynamic behavior of the bridge. 

 

The first ten sets of mode shapes are shown in Figures 3.6-3.15, respectively. All 

mode shapes are normalized to unity instead of mass matrix in order to check with the 

corresponding mode shapes obtained from the free vibration tests. The mode 
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classification can be identified by observing the mass distribution percentage, the modal 

participation factor and the animated mode shape and is listed in Table 3.11. It can be 

found that one dominated mode is always coupled with other modes. The vibration 

modes of the Owensboro cable-stayed bridge are complicated and coupled. 

 
Table 3.10 Natural Frequencies (Hz) and Mass Fraction 

Mass Fraction Frequency 
(Hz) X Y Z ROTX ROTY ROTZ 

0.293403 0.80042E-23 0.104945 0.23984E-19 0.50462E-20 0.20665E-19 0.78601E-01 
0.373609 0.176813 0.104945 0.25033E-19 0.59313E-20 0.21249E-19 0.119683 
0.524643 0.176813 0.104945 0.221384 0.88676E-01 0.181743 0.119683 
0.578998 0.176813 0.415541 0.221384 0.88676E-01 0.181743 0.352312 
0.675054 0.176813 0.415541 0.221384 0.88676E-01 0.181995 0.352312 
0.685296 0.176813 0.415541 0.511880 0.201439 0.420476 0.352312 
0.710348 0.199770 0.415541 0.511880 0.201439 0.420476 0.511002 
0.758056 0.199770 0.415541 0.511880 0.201439 0.444970 0.511002 
0.766625 0.199770 0.415541 0.680656 0.236519 0.583526 0.511002 
0.808145 0.199770 0.415541 0.915037 0.754355 0.775940 0.511002 
0.816315 0.199770 0.415541 0.915037 0.754355 0.927145 0.511002 
0.821629 0.199770 0.912095 0.915037 0.754355 0.927145 0.882910 
0.905169 0.199770 0.912095 0.990145 0.994992 0.988804 0.882910 
0.953834 0.381977 0.912095 0.990145 0.994992 0.988804 0.916995 
0.958334 0.381977 0.912095 0.990145 0.994992 0.990562 0.916995 
1.08725 0.381977 0.912095 0.990147 0.996652 0.990563 0.916995 
1.10609 0.381977 0.912095 0.990147 0.996652 0.991272 0.916995 
1.13813 0.381977 0.913580 0.990147 0.996652 0.991272 0.918108 
1.14832 0.381977 0.913580 0.998979 0.998598 0.998522 0.918108 
1.22834 0.589215 0.913580 0.998979 0.998598 0.998522 0.926461 

 
Table 3.11 Natural Frequencies (Hz) and Participation Factors 

Participation Factor Frequency 
(Hz) X Y Z ROTX ROTY ROTZ 

Mode 
Classification 

0.293403 -0.255E-08 272.33 -0.163E-06 -0.102E-04 0.187E-03 0.304E+06 Vertical 

0.373609 380.27 0.234E-08 -0.342E-07 -0.427E-05 0.315E-04 -0.22E+ 06 Vertical 

0.524643 -0.506E-08 0.161E-06 -497.36 -42806. 0.555E+06 0.194E-03 Transverse + 
Torsion 

0.578998 0.801E-10 468.51 0.136E-06 0.157E-04 -0.176E-03 0.523E+06 Vertical 
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Table 3.11 Continued Natural Frequencies (Hz) and Participation Factors 

Participation Factor Frequency 
(Hz) X Y Z ROTX ROTY ROTZ 

Mode 
Classification 

0.675054 -0.327E-08 -0.502E-07 0.227E-07 0.143E-05 20698. -0.404E-04 Torsion 

0.685296 0.662E-08 0.140E-06 569.73 48271. -0.636E+ 06 0.152E-03 Transverse + 
Torsion 

0.710348 -137.02 0.105E-08 -0.750E-08 0.486E-05 0.5209E-04 0.432E+06 Vertical 

0.758056 0.797E-08 0.503E-07 0.511E-07 0.206E-05 0.204E+ 06 0.468E-04 Torsion 

0.766625 -0.121E-07 0.786E-07 434.27 26924. -0.485E+ 06 0.872E-04 Transverse + 
Torsion 

0.808145 0.141E-07 0.340E-06 -511.76 -0.103E+ 06 0.571E+ 06 0.402E-03 Tower Sway 
+ Torsion 

0.816315 -0.272E-07 -0.188E-06 0.878E-07 0.141E-04 -0.506E+ 06 -0.193E-03 Tower Sway 
+ Torsion 

0.821629 0.931E-09 592.38 0.152E-06 0.405E-04 -0.328E-03 0.661E+06 Vertical 

0.905169 -0.423E-07 0.609E-07 289.70 70515. -0.323E+ 06 0.234E-04 Transverse + 
Torsion 

0.953834 -386.03 0.1005E-08 -0.1105E-06 -0.176E-04 0.131E-03 -0.20E+ 06 Vertical 

0.958334 0.867E-07 -0.556E-08 0.386E-08 -0.116E-05 -54653. 0.401E-04 Torsion 

1.08725 0.241E-06 -0.229E-08 -1.4869 -5855.9 1661.6 0.254E-05 Torsion 

1.10609 -0.164E-08 0.261E-07 -0.162E-08 0.105E-06 34699. 0.271E-04 Torsion 

1.13813 0.693E-10 -32.402 -0.734E-08 0.284E-05 0.964E-05 -36209. Vertical 

1.14832 0.685E-07 0.943E-08 -99.338 6341.5 0.111E+ 06 0.181E-04 Torsion 

1.22834 411.69 -0.324E-08 0.235E-07 0.367E-05 -0.261E-04 -99214. Vertical 
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Figure 3.6 1st Mode Shape (f = 0.2934 Hz, Vertical) 
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Figure 3.7 2nd Mode Shape (f = 0.3736 Hz, Vertical) 
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Figure 3.8 3rd Mode Shape (f = 0.5246 Hz, Transverse + Torsion) 
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Figure 3.9 4th Mode Shape (f = 0.5790 Hz, Vertical) 
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Figure 3.10 5th Mode Shape (f = 0.6751 Hz, Torsion) 
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Figure 3.11 6th Mode Shape (f = 0.6853 Hz, Transverse + Torsion) 
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Figure 3.12 7th Mode Shape (f = 0.7103 Hz, Vertical) 
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Figure 3.13 8th Mode Shape (f = 0.758 Hz, Torsion) 
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Figure 3.14 9th Mode Shape (f = 0.7666 Hz, Transverse + Torsion) 
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Figure 3.15 10th Mode Shape (f = 0.8081 Hz, Tower Sway + Torsion) 
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3.5. Parametric Studies 
 

In order to calibrate the FE model of the Owensboro cable-stayed bridge with in-

situ free vibration measurements in the sense of modal parameters, the structural and 

material parameters that may largely affect the modal properties of the bridge are 

supposed to be identified. This can be realized by the parametric studies. As mentioned 

previously, one of the most advantages of finite element modeling and analysis is to 

make the parametric studies possible. The parametric studies reported here not only prove 

the efficiency of the finite element methodology, but also demonstrate the extent and 

nature of variation in modal properties that a variation in the input parameters can cause. 

The FE model calibration can be conducted by adjusting these parameters to match the 

frequencies and mode shapes between testing and modeling. The calibrated FE model 

will be used as the base line for future structural evaluations of the bridge. 

 

There are several structural and material parameters that would affect the modal 

behavior of the Owensboro cable-stayed bridge, such as the mass, the cable tension 

stiffness, the vertical and transverse bending stiffness of the deck. The effects of these 

parameters on the modal properties of the bridge are studied as follows. 

 

3.5.1. Deck Weight 

 

The change of deck self weights is reflected by the relative mass density of edge 

girders and center beams that is defined by 

 

0ρ
ρρ =  

 

where 0ρ  is the standard mass density of edge girders and center beams listed in Table 

3.4. Frequencies for different deck mass density are summarized in Table 3.12. The 

variation of the first two frequencies with the relative mass density for the edge girders 
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and center beams is shown in Figure 3.16. From the Table 3.12 and Figure 3.16, it can be 

seen that the frequencies increase steadily with decreasing in the deck self weight. 

 

Table 3.12 Frequencies (Hz) for Different Deck Mass Densities 

Relative mass density 
0ρ
ρρ =  for the deck Mode 

order 
0.0 0.25 0.5 1.0 1.5 2.0 

1 0.58807 0.45698 0.37900 0.29340 0.24577 0.21433 
2 0.64538 0.54422 0.46932 0.37361 0.31484 0.27403 
3 0.81060 0.78892 0.70008 0.52464 0.43327 0.37607 
4 0.82038 0.81688 0.74427 0.57900 0.48478 0.42169 
5 1.2238 0.89530 0.81234 0.67505 0.55434 0.47901 
6 1.5011 0.98511 0.82433 0.68530 0.57103 0.49699 
7 1.6180 1.1963 0.92194 0.71035 0.58600 0.50731 
8 1.6269 1.1993 0.95460 0.75806 0.62595 0.54092 
9 1.7700 1.2248 0.96317 0.76662 0.63230 0.54759 
10 1.8895 1.3912 1.0606 0.80814 0.67763 0.58574 
11 1.8902 1.3946 1.0618 0.81632 0.69249 0.60110 
12 2.1022 1.4059 1.1002 0.82163 0.77359 0.66762 
13 2.1073 1.4140 1.1720 0.90517 0.80812 0.70423 
14 2.2252 1.5996 1.2056 0.95383 0.80823 0.76242 
15 2.4658 1.6635 1.3205 0.95833 0.84134 0.77113 
16 2.7328 1.7188 1.3751 1.0873 0.89225 0.80128 
17 2.9182 1.8664 1.4809 1.1061 0.90504 0.80129 
18 2.9882 1.9620 1.5219 1.1381 0.93455 0.83245 
19 3.0234 1.9802 1.5750 1.1483 0.97933 0.85859 
20 3.0653 2.0183 1.5986 1.2283 1.0376 0.89784 
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Figure 3.16 Frequencies vs Deck Mass Density 

 

3.5.2. Cable Stiffness 

 

 The tension stiffness of cables depends on the sectional area A, the elastic modulus 

E and the pre-strain. Because the initial tension force has been given in Table 3.7, we 

only study the effect of the sectional area A and elastic modulus E on the modal 

properties of the bridge, respectively in the following. 

 

3.5.2.1. Cable Sectional Area 

 

The change of cable sectional areas is represented by the relative sectional area of 
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where 0A  is the standard sectional area of cables given in Table 3.5.  Frequencies for 

different cable area ratios are summarized in Table 3.13. The variation of the first two 

frequencies with the relative cable area is shown in Figure 3.17. It has been found that 

increasing the cable sectional area results in the increase of frequency values. Increasing 

the cable areas does result in larger tension stiffness, which is supposed to increase the 

frequencies, but at the same time cable weight increases with the increasing cable area, 

which results in reducing the frequencies. These two effects tend to compensate for each 

other resulting in the less increment of frequencies. It should be noted that the variation 

of cable areas does cause a reordering of the dominated mode shapes as they relate to the 

sequential natural frequency orders. 

 
Table 3.13 Frequencies (Hz) for Different Cable Areas 

Relative sectional area 
0A

AA =  for the cables Mode 
order 

0.25 0.5 0.75 1.0 1.5 2.0 
1 0.17038 0.23575 0.26902 0.29340 0.32934 0.35575 
2 0.19581 0.30598 0.34735 0.37361 0.40732 0.42892 
3 0.29844 0.41204 0.47855 0.52464 0.57819 0.60240 
4 0.32266 0.47191 0.53568 0.57900 0.63700 0.67605 
5 0.34132 0.50756 0.60508 0.67505 0.74022 0.78657 
6 0.38688 0.54634 0.63949 0.68530 0.77130 0.79712 
7 0.38738 0.55902 0.64218 0.71035 0.79854 0.83485 
8 0.38983 0.57031 0.67846 0.75806 0.81510 0.84775 
9 0.40988 0.60421 0.69966 0.76662 0.83712 0.88897 
10 0.47933 0.65127 0.74696 0.80814 0.87821 0.95415 
11 0.49993 0.70458 0.75728 0.81632 0.90903 1.0145 
12 0.59557 0.73369 0.80973 0.82163 0.93987 1.0339 
13 0.64588 0.81274 0.86491 0.90517 1.0074 1.0849 
14 0.64671 0.83743 0.87765 0.95383 1.0251 1.1145 
15 0.68308 0.84755 0.90650 0.95833 1.1029 1.2160 
16 0.72434 0.87014 0.99317 1.0873 1.2255 1.2953 
17 0.75644 0.87479 1.0023 1.1061 1.2302 1.3416 
18 0.76933 0.91820 1.0420 1.1381 1.2679 1.3948 
19 0.78683 0.97879 1.0778 1.1483 1.3197 1.4567 
20 0.81680 1.0117 1.1427 1.2283 1.3552 1.4567 
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Figure 3.17 Frequencies vs Cable Section Area 
 

 

3.5.2.2. Cable Elastic Modulus 

 

The variation of cable elastic modulus is represented by the relative cable elastic 

modulus that is defined by 

 

0E
EE =  

 

where 0E  is the standard elastic modulus of cables defined in Table 3.4. Frequencies for 

different cable elastic modulus ratios are summarized in Table 3.14. The variation of the 

first two frequencies with the relative cable elastic moduli is shown in Figure 3.18.  It has 

been observed that a variation in cable elastic modulus (cable tension stiffness) causes a 

reordering of the dominated mode shapes as they relate to the sequential order of natural 
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frequencies, especially for higher modes. The frequencies increase smoothly as the elastic 

modulus of cables increases in most cases. 

 
Table 3.14 Frequencies (Hz) for Different Cable Moduli 

Relative elastic modulus 
0E

EE =  for the cables Mode 
order 

0.25 0.5 0.75 1.0 1.5 2.0 4.0 
1 0.16678 0.23443 0.26836 0.29340 0.33072 0.35858 0.42746 
2 0.18865 0.30432 0.34661 0.37361 0.40870 0.43164 0.47968 
3 0.29302 0.40904 0.47692 0.52464 0.58153 0.60893 0.64187 
4 0.31418 0.46975 0.53459 0.57900 0.63941 0.68114 0.78485 
5 0.33510 0.50430 0.60335 0.67505 0.74439 0.79547 0.80680 
6 0.38098 0.54420 0.63837 0.68530 0.77517 0.80440 0.85632 
7 0.38104 0.55616 0.64063 0.71035 0.80218 0.84272 0.94243 
8 0.38352 0.56732 0.67677 0.75806 0.81787 0.85371 0.97394 
9 0.40171 0.60099 0.69790 0.76662 0.84032 0.89505 1.0646 
10 0.47166 0.64873 0.74574 0.80814 0.88240 0.96399 1.2094 
11 0.49008 0.70067 0.75526 0.81632 0.91370 1.0253 1.3085 
12 0.58606 0.72984 0.80787 0.82163 0.94263 1.0400 1.3164 
13 0.63742 0.80902 0.86286 0.90517 1.0122 1.0910 1.3532 
14 0.63825 0.83434 0.87609 0.95383 1.0279 1.1255 1.4824 
15 0.67434 0.84413 0.90508 0.95833 1.1079 1.2272 1.5297 
16 0.71610 0.86662 0.99123 1.0873 1.2290 1.3028 1.5796 
17 0.75083 0.87142 1.0004 1.1061 1.2352 1.3527 1.7021 
18 0.76258 0.91395 1.0398 1.1381 1.2726 1.4055 1.7683 
19 0.77351 0.97578 1.0764 1.1483 1.3247 1.4641 1.7861 
20 0.81084 1.0084 1.1411 1.2283 1.3587 1.4678 1.8830 
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Figure 3.18 Frequencies vs Cable Elastic Modulus 
 
 
3.5.3. Deck Bending Stiffness 

 

The deck system of the Owensboro cable-stayed bridge is modeled by the edge 

girders and center beams. A variation in the deck bending stiffness is then represented by 

the relative inertia moment of edge girders and center beams. They are changed by the 

same ratio. The vertical bending stiffness and lateral bending stiffness of edge girders and 

center beams are studied, respectively. 

 

3.5.3.1. Deck Vertical Bending Stiffness 

 

The variation of the deck vertical bending stiffness is represented by the relative 
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0z

z
z I

I
I =  

 

where 0zI  is the standard vertical inertia moment of edge girders and center beams 

defined in Table 3.5. Frequencies for different deck vertical bending stiffnesses are 

summarized in Table 3.15. The variation of the first two frequencies with the relative 

deck vertical bending stiffness is shown in Figure 3.19. The results show that the vertical 

frequencies increase smoothly as the deck vertical bending stiffness increases. However, 

the deck vertical bending stiffness has little effect on both transverse and torsion 

frequencies. 

 

Table 3.15 Frequencies (Hz) for Different Deck Vertical Stiffness 

Relative vertical bending stiffness 
0z

z
z I

I
I =  for the deck Mode 

order 
0.1 0.5 1.0 2.0 3.0 4.0 

1 0.24060 0.27349 0.29340 0.31806 0.33468 0.34747 
2 0.28418 0.33729 0.37361 0.42408 0.46201 0.49340 
3 0.49848 0.51811 0.52464 0.53168 0.53581 0.53864 
4 0.50570 0.54177 0.57900 0.63579 0.68122 0.70081 
5 0.58818 0.66042 0.67505 0.69383 0.69862 0.71805 
6 0.63845 0.66210 0.68530 0.69454 0.70724 0.72016 
7 0.65053 0.67438 0.71035 0.77794 0.78998 0.79487 
8 0.65506 0.73640 0.75806 0.78018 0.80783 0.82261 
9 0.67795 0.74778 0.76662 0.79008 0.83282 0.84514 
10 0.70073 0.75307 0.80814 0.82762 0.83927 0.85433 
11 0.71108 0.78860 0.81632 0.82919 0.84102 0.88152 
12 0.75765 0.81145 0.82163 0.92494 0.95733 0.98029 
13 0.76131 0.83581 0.90517 0.93236 1.0094 1.0807 
14 0.79427 0.88827 0.95383 1.0449 1.1105 1.1660 
15 0.81586 0.89474 0.95833 1.0960 1.1659 1.2032 
16 0.81601 0.98244 1.0873 1.2080 1.3043 1.3493 
17 0.84848 1.0050 1.1061 1.2258 1.3155 1.3870 
18 0.87157 1.0208 1.1381 1.2676 1.3215 1.4051 
19 0.89410 1.0558 1.1483 1.2780 1.3838 1.4781 
20 0.89449 1.0561 1.2283 1.3934 1.5236 1.6497 

 



Finite Element Modeling and Calibration 

 74

 
 

Figure 3.19 Frequencies vs Deck Vertical Bending Stiffness 
 
 
 
3.5.3.2. Deck Lateral Bending Stiffness 

 

The variation of the deck lateral bending stiffness is represented by the relative 

lateral inertia moment of edge girders and center beams that is defined by 

 

0y

y
y I

I
I =  

 

where 0yI  is the standard lateral inertia moment of edge girders and center beams defined 

in Table 3.5. Frequencies for different deck lateral bending stiffness are summarized in 

Table 3.16. The variation of the first frequency and the third frequency with the relative 

deck lateral bending stiffness is shown in Figure 3.20. The results show that the 

increment of the deck lateral bending stiffness does affect on the transverse and torsion 
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frequencies but does not contribute to the vertical frequencies. It has been noted that 

increasing the deck lateral bending stiffness results in the warping of the deck and the 

variation of the deck lateral bending stiffness causes a reordering of the dominated mode 

shapes as they relate to the sequential order of natural frequencies. 

 
Table 3.16 Frequencies (Hz) for Different Lateral Deck Stiffness 

Relative lateral bending stiffness 
0y

y
y I

I
I =  for the deck Mode 

order 
0.1 0.25 0.5 0.75 1.0 1.5 2.0 

1 0.29338 0.29339 0.29340 0.29340 0.29340 0.29340 0.29341 
2 0.37358 0.37360 0.37360 0.37361 0.37361 0.37361 0.37361 
3 0.47630 0.51037 0.52764 0.53019 0.52464 0.50299 0.47870 
4 0.57894 0.57898 0.57899 0.57899 0.57900 0.57900 0.57065 
5 0.71022 0.71030 0.71033 0.69744 0.67505 0.61638 0.57901 
6 0.75169 0.73685 0.71329 0.71034 0.68530 0.65419 0.61526 
7 0.80079 0.79914 0.75386 0.71131 0.71035 0.69519 0.64376 
8 0.82045 0.80694 0.79877 0.78690 0.75806 0.71036 0.69016 
9 0.82147 0.82157 0.82160 0.79830 0.76662 0.72753 0.71036 
10 0.83959 0.82526 0.82685 0.82162 0.80814 0.76632 0.74901 
11 0.92900 0.89336 0.84170 0.82368 0.81632 0.81079 0.79572 
12 0.95375 0.92327 0.86688 0.82933 0.82163 0.82164 0.82165 
13 0.96185 0.95380 0.95382 0.92379 0.90517 0.87495 0.82361 
14 1.0649 1.0208 0.96276 0.95383 0.95383 0.90268 0.89250 
15 1.1380 1.1381 1.0733 1.0109 0.95833 0.95384 0.93235 
16 1.1998 1.1484 1.1381 1.1381 1.0873 0.99715 0.93828 
17 1.2281 1.2283 1.2122 1.1445 1.1061 1.0080 0.95384 
18 1.3120 1.2932 1.2283 1.1672 1.1381 1.0522 0.99283 
19 1.3493 1.3257 1.2393 1.2105 1.1483 1.1381 1.0816 
20 1.3762 1.3740 1.2848 1.2283 1.2283 1.1702 1.1381 
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Figure 3.20 Frequencies vs Deck Lateral Bending Stiffness 
 
3.6. Finite Element Model Calibration 
 

A realistic computation model, calibrated with the help of experimental 

measurements, can be a valuable tool in the efforts to preserve the bridge structural 

evaluation using dynamic-based methods. The process is required to combine the bridge 

analyses and experimental measurements. Confidence in using FE models for dynamic 

performance predictions of a structure is lacking owing to a relatively difference between 

experimental and analytical modes. The differences are not only from the modeling errors 

resulting from simplifying assumptions made in modeling the complicated structures but 

also from parameter errors due to structural defect and uncertainties in the material and 

geometric properties. Dynamic-based evaluation is therefore based on a comparison of 

the experimental modal analysis data obtained in situ field tests with the finite element 

predictions. The FE model of a real structure is then calibrated by using dynamic 

measurement results. 
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We have known the real dynamic properties of the bridge through field free 

vibration testing. And we have already known the structural or material parameters that 

may largely affect the modal properties of the bridge through parametric studies. The 

original finite element model can be calibrated by adjusting these parameters to match the 

frequencies and mode shapes best between testing and modeling. The updated structural 

and material parameters are summarized in Table 3.17 and Table 3.18, respectively. 

Table 3.17 Calibrated Real Constants 

Inertia moment: (ft4) 
Type 

Cross-
section 

Area: (ft2) Izz Iyy 
Initial strain Structural member 

1 3.33 35.031 0.25233 - Edge girder 
2 3.58 38.066 0.25288 - Edge girder 
3 2.7988 8.4107 0.25209 - Edge girder 
4 2.8508 8.5227 0.25222 - Edge girder 
5 2.7467 8.2983 0.25199 - Edge girder 
6 2.903 8.6344 0.25238 - Edge girder 
7 2.9264 8.8194 0.26226 - Edge girder 
8 2.7701 8.4879 0.26188 - Edge girder 
9 2.8743 8.7091 0.26211 - Edge girder 
10 2.8222 8.5986 0.26198 - Edge girder 
11 2.9264 9.164 0.31623 - Edge girder 
12 3.0774 10.123 0.39026 - Edge girder 
13 2.7232 8.1005 0.24211 - Edge girder 
14 2.7753 8.2152 0.24221 - Edge girder 
15 2.8274 8.3292 0.24233 - Edge girder 
16 2.8795 8.4427 0.24249 - Edge girder 
17 2.8222 8.7785 0.28901 - Edge girder 
18 2.9264 9.0061 0.28924 - Edge girder 
19 7.4139 98.031 5448.7 - Center beam 
20 0.3919 0.02483 1.6034 - Floor beam 
21 83 2486.3 2870.2 - Tower (lower) 
22 64.5 1894.4 638.6 - Tower (upper) 
23 58.5 613.9 1829.2 - Tower (strut) 
24 159.36 3399.7 1317.4 - Tower (head) 
25 142.72 3044.7 946.31 - Tower (head) 
26 128 2730.7 682.67 - Tower (head) 
27 126.72 2703.4 662.4 - Tower (head) 
28 122 2602.7 591.1 - Tower (head) 
29 121.28 2587.3 580.7 - Tower (head) 
30 52 69 732 - Bearing 
31 0.059722 - - 3.6130E-03 Cables 1 & 49 
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Table 3.17 Continued Calibrated Real Constants 

Inertia moment: (ft4) 
Type 

Cross-
section 

Area: (ft2) Izz Iyy 
Initial strain Structural member 

32 0.058229 - - 3.5285E-03 Cables 2 & 50 
33 0.086597 - - 3.7096E-03 Cables 3 & 51 
34 0.044792 - - 3.5552E-03 Cables 4 & 52 
35 0.050764 - - 3.6605E-03 Cables 5 & 53 
36 0.047778 - - 3.7440E-03 Cables 6 & 54 
37 0.044792 - - 3.6995E-03 Cables 7 & 55 
38 0.041806 - - 2.2396E-03 Cables 8 & 56 
39 0.038819 - - 1.8568E-03 Cables 9 & 57 
40 0.035833 - - 1.9514E-03 Cables 10 & 58 
41 0.026875 - - 2.0494E-03 Cables 11 & 59 
42 0.037326 - - 1.0586E-03 Cables 12 & 60 
43 0.037326 - - 1.1035E-03 Cables 13 & 61 
44 0.026875 - - 2.0226E-03 Cables 14 & 62 
45 0.035833 - - 2.0115E-03 Cables 15 & 63 
46 0.037326 - - 2.1107E-03 Cables 16 & 64 
47 0.040313 - - 2.1563E-03 Cables 17 & 65 
48 0.043299 - - 2.1790E-03 Cables 18 & 66 
49 0.047778 - - 2.4008E-03 Cables 19 & 67 
50 0.050764 - - 2.3303E-03 Cables 20 & 68 
51 0.053750 - - 2.0271E-03 Cables 21 & 69 
52 0.058229 - - 2.5415E-03 Cables 22 & 70 
53 0.056736 - - 3.3491E-03 Cables 23 & 71 
54 0.074653 - - 3.4066E-03 Cables 24 & 72 
55 0.074653 - - 3.4066E-03 Cables 25 & 73 
56 0.056736 - - 3.3491E-03 Cables 26 & 74 
57 0.058229 - - 2.5415E-03 Cables 27 & 75 
58 0.053750 - - 2.0271E-03 Cables 28 & 76 
59 0.050764 - - 2.3303E-03 Cables 29 & 77 
60 0.047778 - - 2.4008E-03 Cables 30 & 78 
61 0.043299 - - 2.1790E-03 Cables 31 & 79 
62 0.040313 - - 2.1563E-03 Cables 32 & 80 
63 0.037326 - - 2.1107E-03 Cables 33 & 81 
64 0.035833 - - 2.0115E-03 Cables 34 & 82 
65 0.026875 - - 2.0226E-03 Cables 35 & 83 
66 0.037326 - - 1.1035E-03 Cables 36 & 84 
67 0.037326 - - 1.0586E-03 Cables 37 & 85 
68 0.026875 - - 2.0494E-03 Cables 38 & 86 
69 0.035833 - - 1.9514E-03 Cables 39 & 87 
70 0.038819 - - 1.8568E-03 Cables 40 & 88 
71 0.041806 - - 2.2396E-03 Cables 41 & 89 
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Table 3.17 Continued Calibrated Real Constants 

Inertia moment: (ft4) 
Type 

Cross-
section 

Area: (ft2) Izz Iyy 
Initial strain Structural member 

72 0.044792 - - 3.6995E-03 Cables 42 & 90 
73 0.047778 - - 3.7440E-03 Cables 43 & 91 
74 0.050764 - - 3.6605E-03 Cables 44 & 92 
75 0.044792 - - 3.5552E-03 Cables 45 & 93 
76 0.086597 - - 3.7096E-03 Cables 46 & 94 
77 0.058229 - - 3.5285E-03 Cables 47 & 95 
78 0.059722 - - 3.6130E-03 Cables 48 & 96 

 

Table 3.18 Calibrated Material Properties 

Group 
No. 

Young’s 
modulus (lb/ft2) 

Poisson’s 
ratio 

Mass density 
(lb/ft3) Structural member 

1 6.358×108 0.2 150 Towers 
2 4.176×109 0.3 490 Cables 
3 4.176×109 0.3 710.5 Edge girders 
4 4.176×109 0.3 695.1 Edge girders 
5 4.176×109 0.3 752.3 Edge girders 
6 4.176×109 0.3 747.5 Edge girders 
7 4.176×109 0.3 757.3 Edge girders 
8 4.176×109 0.3 742.9 Edge girders 
9 4.176×109 0.3 740.9 Edge girders 
10 4.176×109 0.3 755.1 Edge girders 
11 4.176×109 0.3 745.4 Edge girders 
12 4.176×109 0.3 750.2 Edge girders 
13 4.176×109 0.3 740.9 Edge girders 
14 4.176×109 0.3 728.6 Edge girders 
15 4.176×109 0.3 759.6 Edge girders 
16 4.176×109 0.3 754.5 Edge girders 
17 4.176×109 0.3 749.7 Edge girders 
18 4.176×109 0.3 745 Edge girders 
19 4.176×109 0.3 750.2 Edge girders 
20 4.176×109 0.3 740.9 Edge girders 
21 4.176×109 0.3 886.2 Center beam 
22 4.176×1012 0.3 490 Floor beams 
23 4.176×109 0.3 490 Bearings 
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The several frequencies coming out of the system identification through the free 

vibration measurements and FEM predictions are summarized in Table 3.19. A good 

agreement of frequencies has been found between FE modeling and in situ vibration 

measurements. Since the floor beams in FEM are modeled as more rigid beams, its mode 

shape is transverse plus torsion. As mentioned previously, a dominated mode of the 

Owensboro cable-stayed bridge in 3-D FE modeling is always coupled with other mode 

shapes. The higher the dominated mode is, the more serious the coupling. Because the 

experimental modal properties of the bridge come from the free vibration measurements, 

the better matching for higher modes is not expected and not realistic. 

 

Table 3.19 Comparison of Frequencies 

Mode Test (Hz) FE Model (Hz) Mode classification 
1 0.301667 0.293403 Vertical 
2 0.388333 0.373609 Vertical 
3 - 0.524643 Transverse + Torsion 
4 0.601667 0.578998 Vertical 
5 0.696667 0.675054 Vertical; Torsion for FEM 
6 - 0.685296 Transverse + Torsion 
7 0.74 0.710348 Vertical 
8 - 0.758056 Torsion 
9 - 0.766625 Transverse + Torsion 
10 - 0.808145 Tower Sway + Torsion 
11 - 0.816315 Tower Sway + Torsion 
12 0.818333 0.821629 Vertical 

 

The first two vertical mode shapes of both FE modeling and vibration testing are 

shown in Figures 3.21-3.22. The test mode shapes are directly obtained by picking up the 

magnitude values of each spectral diagram at the peak points from the moveable stations 

divided by those of each spectral diagram at the peak points from the base stations. The 

FE mode shapes have been normalized according to the maximum value (unity) of the 

test point. In fact, the mode shapes through free vibration are not always that good 

because the free excitation does not lend itself to frequency response functions (FRFs) or 

impulse response functions (IRFs) since the input force can not be measured. Peak 
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picking is always a subjective task. This is one of the drawbacks of structural system 

identification through free vibration measurements. 
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Figure 3.21 Comparison of First Vertical Mode Shape 

 
 



Finite Element Modeling and Calibration 

 82

-1.5

-1

-0.5

0

0.5

1

1.5

0 400 800 1200 1600 2000 2400

Location (foot)

M
ag

ni
tu

de
Series1
Series2

FEM (f = 0.3736)

Test (f = 0.3883)

 
Figure 3.22 Comparison of Second Vertical Mode Shape 

 

3.7. Remarks 

  

A detailed 3-D finite element model has been developed for the Owensboro cable-

stayed bridge in order to make a start toward the evaluation of this structure. From the 

static analysis due to dead loads, followed by pre-stressed modal analysis, parametric 

studies and FE Modeling calibration, the following observations and comments can be 

made: 

 

1. It is natural to discretize the cable between the tower and the edge girder into a single 

tension-only truss element (cable element). Two node cable elements, however, are 

relatively weak elements. But, since two end nodes of the cable element are 

connected with the beam elements of the tower and the girder, sufficient constraints at 

each cable node are provided and then the nonlinear static analysis or the modal 

analysis can be carried out. 
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2. The completely 3-D nonlinear modeling of a cable-stayed bridge has proved to be 

difficult. The smaller discretization would be computationally very large and 

inefficient. Convergence of such a large number of nonlinear elements is not always 

guaranteed. The choice of convergent criterion to control the iteration procedure 

becomes essential. The common force convergent criterion defaulted in the ANSYS 

is not so effective in the nonlinear analysis of a cable-stayed bridge. Instead, the 

displacement convergence criterion has proved to be effective and often results in the 

convergent solution. 

 

3. Due to the cable sagging, the static analysis of a cable-stayed bridge is always a 

geometric nonlinear. The stress stiffening of cable elements (cable sagging effect) 

plays an important role in both the static and dynamic analysis of a cable-stayed 

bridge. Nonlinear static analysis without the stress stiffening effect will leads to an 

aborted run due to the divergent oscillation even though the displacement 

convergence criterion is used. 

 

4. The large deflection has been demonstrated to be the limited effect on the member 

forces and the deck deflection of the bridge under dead loads. After introducing 

enough amount of initial strain in the cables, the static analysis of the Owensboro 

cable-stayed bridge due to dead loads can be elastic and small deflection. The stress 

stiffening effect, however, is always required to ensure the convergent solution. 

 

5. The initial strain in the cables is the key factor to control the initial equilibrium 

configuration under the dead load. For a completed bridge, the common fact is that 

the initial position of the cable and bridge is unknown. The initial geometry of the 

bridge which was modeled is really the deflected shape of the bridge loaded by the 

dead load. The initial equilibrium configuration of the bridge due to dead loads can be 

approximately achieved by referring to the bridge plans. 

 

6. It is demonstrated that a cable-stayed bridge is a highly pre-stressed structure. The 

modal or any dynamic analysis must start from the initial equilibrium configuration 
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due to dead loads. This initial equilibrium configuration can be a small deflection 

static analysis because the large deflection can be ignored. The modal analysis of a 

cable-stayed bridge should include two steps: small deflection static analysis under 

the dead load and followed by pre-stressed modal analysis, so that the dead load 

effect on the stiffness can be included. In other words, the modal analysis of a cable-

stayed bridge must be a pre-stressed modal analysis. 

 

7. It is clearly shown that the self-weight can improve the stiffness of a cable-stayed 

bridge. In the case of the Owensboro cable-stayed bridge, the dead load effect 

increases the natural frequency of the bridge due to the stiffening of the structure. 

Therefore, the regular modal analysis without a dead-load static analysis will 

underestimate the stiffness of the cable-stayed bridge and consequently provide the 

more safe evaluation of the bridge. 

 

8. It is observed that one dominated mode is always coupled with other modes. The 

dominated mode shapes of the Owensboro cable-stayed bridge in the low-frequency 

(0~1.0 Hz) range are mainly vertical direction. This reveals the fact that the lateral 

stiffness of the cable stayed bridge is stronger than that of the suspension bridge (Ren 

and Harik 2001). 

 

9. From the parametric studies, it is found that the key parameters affecting the vertical 

modal properties are the mass, cable sectional area, cable elastic modulus and deck 

vertical bending stiffness. The key parameters affecting the transverse and torsion 

modal properties are the mass, cable sectional area, cable elastic modulus and deck 

lateral bending stiffness. 

 

10. A good agreement of frequencies has been found between FE modeling and in situ 

free vibration testing. But the mode shapes are not too good as output-only 

measurement does not lend itself to frequency response functions (FRFs) or impulse 

response functions (IRFs) since the input force can not be measured. This is also one 

of the drawbacks of output-only measurements. 
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11. The better matching for higher modes is not expected and not realistic either, as the 

experimental modal properties of the bridge come from the output-only measurement. 

 

12. The calibrated finite element model may be used as a baseline in the future structural 

analysis and monitoring of the Owensboro cable-stayed bridge. 
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4. CABLE TESTING AND MODELING 

 

 

4.1. General 

 
Many occurrences of wind-induced vibrations of bridge stay cables have been 

reported worldwide [Yoshimura, 1995; Hikami, 1988; Matsumoto, 1992]. Among these 

are instances of rain-wind vibrations occurring on other Ohio River crossings, including 

the East Huntington Bridge in West Virginia. Previous testing of the cable-stayed bridge 

in Maysville, Kentucky saw persistent rain-wind response of cables, but cross ties 

included in the Maysville design seemed to be effective in limiting the amplitude of the 

wind-induced response [Harik, 2005].  

 

On some stay-cable bridges, retrofit designs have been required to mitigate large-

amplitude wind-induced vibration. Consequently, separate cable modeling and testing 

was required. On other existing bridges, long-term cable condition assessment has been 

accomplished with cable modeling and testing. In this chapter, the bridge cables are 

considered separately to document baseline testing results and to create verified models. 

 

Although researchers are investigating the causes and critical parameters 

associated with rain-wind vibration [Main, 2001; Flamand, 2001] and deck-induced cable 

motions [Caetano, 2000a; Caetano, 2000b], complete understanding of the physics 

behind these potentially damaging large-amplitude oscillations is not available. Recently, 

the FHWA released the report of its study of wind-induced oscillations of bridge stay 

cables including design strategies to mitigate stay cable oscillations. Some of these 

strategies, such as helical filets on the external surface of the stays and cross ties between 

the stay cables, are incorporated in the Owensboro stay cable design. 

 

The objective of this effort was to develop detailed verified models of the 

Owensboro stay cable systems. In Kentucky, previous testing of the cables of the 
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Maysville bridge demonstrated the accuracy and utility of using short time record 

measurements of cable acceleration to determine cable fundamental frequencies for 

model verification. In Maysville, simultaneous recordings of the accelerations of the 

cable and deck anchor at the base of the cable enabled comparison of their motions. 

Similar testing procedures are applied in this effort to measure the dynamic response of 

the Owensboro cables and deck anchors. Observations of cable and cross-tie motion, 

along with their evaluation in the context of recent reports are also an objective.    

 

It is important to note that identified frequencies for a cable may differ from field 

test to field test. In Maysville, differences seen in the identified fundamental cable 

frequencies of the longest cables were attributed to combined effects of temperature and 

use. The Owensboro cable modeling and testing effort did not include an objective to 

examine trends with temperature or use. 

 

The ninety-six cables of the Owensboro Bridge are unique flexible structures 

whose dynamic response characteristics depend on material properties, tension, and 

possibly temperature. The Owensboro cables were constructed according to the plans 

with modifications as detailed in the as-built information provided by David McDowell 

(David.McDowell@ky.gov) Transportation Engineer Supervisor, Kentucky 

Transportation Cabinet District Two - Madisonville. In the original plans, the ninety-six 

cables are nominally four sets of twenty-four cables. Each set is associated with either the 

Kentucky (South) or Ohio (North) tower and with the upstream (East) or downstream 

(West) side of the bridge as seen in the aerial photograph (Figure 4.1) and elevation 

drawing (Figure 4.2). Cables are numbered from 1 to 48 from Kentucky.  

 

To bring the bridge deck into alignment side-to-side as the constructed sections 

met in the center and to smooth the vertical deck profile, cable design tensions were 

adjusted from those listed in the original plans. Several “as-built” cable tensions differed 

considerably from the tensions listed on the bridge plans with an average tension change 

of 24% (decrease) from the bridge plans. Some tensions decreased by as much as 70 % 

(maximum tension decreases: 72.1% for Cable 36E, 71.9% for Cable 12E and 70.0% for 
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Cables 37W and 37E). For a few cables, the “as-built” tensions increased from those on 

the bridge plans (maximum tension increases: 17.8% for Cable 6E, 17.5% for Cable 7E 

and 17.3% for Cable 37W). Changes to all design dead load tensions are presented 

graphically in Figure 4.3. Note that the largest as-built tension increases occurred for the 

longest cables at the ends of the span while the largest tension decreases occurred for the 

shortest cables at the towers. 

     
Figure 4.1 Aerial and Approach Views of the Owensboro Bridge 

 

 

 
Figure 4.2 Elevation Drawing of the Owensboro Bridge 
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Figure 4.3 Recorded Changes to Design Tensions for Alignment and Profile Adjustment 
 

Assuming linear response, development of correlated finite element models of the 

cables requires field tests. Two different field tests of the Owensboro cables were conducted to 

support development of accurate finite element models. This chapter presents the field-testing 

and test results, the modeling approaches and analysis results, observations of the cables and 

cross-ties and then closes with summarizing remarks. 
 

4.2. Field Testing of the Owensboro Bridge Stay Cables 

 
 Two field survey tests were conducted of the Owensboro cables as follows: 

 

1) October 15-16, 2002 – Prior to opening the bridge, loaded trucks were run to 

excite dynamic response of the bridge, including the cables. It was found that wind-

induced motion of the cables was also sufficient for fundamental frequency identification. 

Acceleration responses of cables and their corresponding deck anchors were recorded. 

The height of the anchors of the Owensboro Bridge required the use of a man-lift vehicle 
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for accelerometer placement on the cable. Figure 4.4 is a typical run of the loaded trucks 

exciting the bridge motion. Dr. Suzanne Weaver Smith, with graduate students Jennie 

Campbell, Matt Hayden and Philip Jean conducted the test. 

   
Figure 4.4 Field Tests of the Owensboro Bridge Conducted with Loaded Trucks 

 

2) August 4-5, 2003 – Acceleration responses of the 48 upstream cables (cables 

1E-48E) and 24 downstream cables (1W-24W) and their deck anchors were recorded as 

typical light and moderate traffic traveled the bridge. Accelerometers were placed at 

several locations on the deck anchors for use in model verification, if required. Dr. 

Suzanne Smith, Jennie Campbell, Michiko Usui, Justin Kearns and Dr. John R. Baker 

(UK Paducah Engineering) conducted the test. 

  
Figure 4.5 Typical Traffic Including Heavy Trucks During Test on August 4-5, 2003 
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4.2.1. First Field Test, October 15-16, 2002 

The first field test and results are summarized in Figures 4.6 through 4.15. The bridge 

was closed to traffic for the field tests, with excitation provided by two loaded trucks driven in 

tandem. A few of the test runs occurred concident with those reported in Chapter 2, but 

differences in testing approaches (record lengths, for example) and no simultaneous 

measurement capability precluded synchonized testing of the cables with the superstructure. 

 

 
Figure 4.6 Triaxial Accelerometer Placement and Coordinate Definition 

 

Cable response measurement proceeded as with previous successful tests of cables of 

the Maysville bridge. Triaxial accelerometers (PCB Piezotronics, Inc. model 3703G3FD3G) 

were used to measure three-dimensional accelerations of each cable and anchor (representing 

the motion of the deck); voltage signals were recorded for 60 seconds at a sampling rate of 

200 Hz to a notebook PC using Iotech’s Wavebook/512 12-bit, 1 MHz Data Acquisition 

System. Redundant accelerometers were mounted to provide alternate records in case a 

channel failed during the testing. The first pair of accelerometers was placed on the above-the-

deck anchor, representing the motion of the deck as seen in Figure 4.7. The second pair of 

accelerometers was mounted securely to the cable using a lift to reach a mounting location 

above the anchor. All accelerometers were oriented with respect to primary directions of the 

cable as shown in Figure 4.6 with the x-axis parallel to the longitudinal cable axis, the y-axis 
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transverse to the cable horizontally for out-of-plane motion (this is lateral with respect to the 

bridge deck), and the z-axis transverse to the cable in the vertical plane of static equilibrium. 

Simultaneous measurement of tower anchor motion for each cable was not possible. However, 

note that previous superstructure testing of other bridges (e.g., the Maysville bridge) showed 

tower motion to be one to two orders of magnitude smaller than deck motions. 

 

  
Figure 4.7 Typical Anchor Accelerometer Mounting 

 

  
Figure 4.8 Typical Cable Accelerometer Mounting 
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Figure 4.9 Cable Cross Ties (Restrainers) 

  
Figure 4.10 Additional Images of October 2002 Testing 

 

   
Figure 4.11 Additional Images of the Owensboro Bridge 
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4.2.2. Cepstrum Signal Processing for Frequency Identification 

The signal processing approach used to identify the fundamental frequency of each 

cable from the recorded short time-record accelerations is the same as that used to date for 

testing over 800 cables on four bridges in Texas and Kentucky, including the previous 

Maysville bridge cable testing effort. Modern-design cable-stayed bridges have from dozens 

to hundreds of cables. Of primary interest is determination of the cable fundamental 

frequency, typically in the range of 0.5 to 3.0 Hz. Identification of deck modal frequencies in 

this same low-frequency bandwidth usually involves signal processing of time records often 

15-minutes in length or longer. Based on experience from field testing, acquiring data records 

of this length for all 96 cables of the Owensboro Bridge would require more than 5 days of 

testing time on the bridge. 

 

However, cables have unique frequency response characteristics including harmonics, 

enabling a more efficient field testing approach for condition monitoring. Signal processing 

techniques have been developed for rotating machinery to identify the underlying frequency of 

the harmonic family. This paper presents this “cepstrum” approach applied to bridge stay 

cables. With this approach, short time records 45 to 60 seconds in length are able to be used to 

determine the fundamental cable frequency. Consequently, field survey testing of 72 cables of 

the Owensboro bridge was accomplished in only 1.5 days. Further, the approach is easily 

automated to enable processing of the resulting data in less than half a day. Therefore, with 

this approach, periodic field testing can be efficiently conducted of cable-stayed bridges for 

condition monitoring and for model validation. 

 

In applications involving rotating machinery or gear systems, cepstrum analysis has 

been used for over a decade to detect families of uniformly spaced harmonics that appear in 

the measured signal when faults occur in the system [Shock and Vibration Handbook, 1996]. 

A family of uniformly-spaced harmonics is also seen in inclined bridge stay cable response 

(Figure 4.12). Therefore, cepstrum analysis was applied for automation of the data analysis to 

determine the fundamental frequency of the cables. 
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In essence, one finds the “spectrum of the spectrum.” First the frequency content of 

the time history (time-domain) data is determined using a discrete Fourier transform spectral 

analysis. Treating the spectrum (frequency-domain) data as a signal, a second spectral analysis 

finds the “frequency” of the peaks in the cable response spectrum. The second Fourier 

transform returns the result to the time domain. The first, largest peak of the cepstrum occurs 

at a time that is the period associated with frequency spacing of the peaks in the spectrum of 

the recorded data.  

 
Figure 4.12 Typical Cable Time-History Data, Corresponding Spectrum and Cepstrum 

 

Herein, a slight variation of the typical cepstrum analysis is used. In other applications 

the spectrum is used on a log scale which magnifies subtle features of the response. In this 

application, we want to deemphasize noise and other subtle effects, so the spectrum is used on 

a linear scale. Note that for a distinct peak in the cepstrum, one must have a “reasonable 

number of adequately resolved” members of the harmonic family in the spectrum [Shock and 

Vibration Handbook, 1996]. For most inclined bridge stay cables, ambient excitation of cable-

stayed bridges from passing traffic or wind satisfies this requirement.  

 



Cable Testing and Modeling 

 96

For the typical example (Figure 4.12) above, a 60-second time record was recorded 

with a 200-Hz sample rate; corresponding spectra were computed using a 4096-point Fast 

Fourier Transform (FFT) and 3000-point overlap averaging. The FFT length to compute the 

Cepstrum was 512 points. 

 

A study was performed under this effort to understand the impact of selecting different 

FFT sizes to compute the Cepsrum. As seen in Figures 4.13 and 4.14, the Cepstrum FFT size, 

along with the bandwidth of the excited modes, may lead to zero-padding in the FFT 

computation. With larger FFT sizes, a near-zero peak appears in the Cepstrum. Parameters are 

selected for optimal automated identification of the cable frequencies and may be different for 

each test depending on the excited bandwidth and the desired resolution of the identification. 

The resulting time-domain resolution is ∆t seconds. Since the dominant period is the inverse 

of the fundamental frequency, this time-domain resolution gives a variance of the identified 

frequency results for the longest cables (with fundamental frequency near 0.5 Hz) and for the 

shortest cables (with fundamental frequency near 2.0 Hz). The resolution of the identified 

frequency of a shorter cable is larger than that for longer cables. 

 
Figure 4.13 Typical Cable Spectrum and Three Possible FFT Lengths for Cepstrum 
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Figure 4.14 Resulting Cepstra Using Three FFT Lengths 

 

Results of the field survey testing and Cepstrum analyses are tabulated later in the 

section on finite element modeling. However, a quick look at the identified frequency results 

is presented in Figure 4.15. Here the upstream cable data sets were processed automatically 

using the Cepstrum approach. The horizontal axis is the data set number, rather than the cable 

number. For about five cables, multiple recorded time histories were used, so instead of 48 

cables, this preliminary result shows 53 results. The vertical axis is the fundamental frequency, 

in Hz. Each result uses two different FFT sizes to automatically compute the Cepstrum, and 

shows that for most of the cables, the results are identical. These are compared to fundamental 

frequencies determined from the as-built specifications using a taut-string model: 

 

 
m
T

L
f

2
1

=  

 

where f is the fundamental frequency in cycles per second, L is the free length in feet, T is the 

tension in lbs, and m is the mass per unit length of the string in lbs-s2/ft2. Comparison of the 

field test frequencies to taut-sring frequencies shows that they correlate well, within the 

resolution of the method. Note that with this method, there is a larger resolution for higher-

frequency, shorter cables (see, for example, Cable 16 compared to Cable 7 in Figure 4.15). 
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As is typical with this approach for field testing and signal analysis, ocassionally with 

the smaller FFT size some frequencies are identified incorrectly as compared to the frequency 

of a taut string. For this small number of cables, the data can be examined and processed by 

hand to select different processing parameters to improve the result. From these preliminary 

results of the first field survey test, the cables of the Owensboro bridge are seen to be 

adequately excited by traffic or wind for frequency identification. 

 

One additional result from the first field survey test of the Owensboro cables was that 

some of the cross ties (restrainers) were visibly moving. This is a concern as persistent 

excessive flexing of the cross ties may lead to problems with positioning or fatique. 

 

 
Figure 4.15 Preliminary Frequency Results Compared to Taut-String Model Frequencies 

 

4.2.3. Second Field Test, August 4-5, 2003 

The second field test and results are summarized in Figures 4.16 through 4.17. The 

bridge was open to traffic for the field tests, with excitation provided by traffic and ambient 

wind. Field testing and data analysis proceeded as described above for the first test with a few 

exceptions. No problems were experienced with instrumentation used for the first test, so it 

was concluded that there is no need for redundant sensors at each location. The available 
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accelerometers were placed at additional locations on the deck anchors to enable verification 

of detailed anchor models. Accelerometer mounting locations are seen in Figure 4.16. 

 

Comparison of the spectra of the deck and the cable can reveal frequency relationships 

indicating deck excited motions of the cables. Figure 4.17 presents a plot of the deck and cable 

spectra for 48 upstream cables of the Owensboro bridge. For each line plotted, the dark (blue) 

spectrum is of the anchor motion and the light (green) spectrum is for the cable motion. No 

relationship is seen between the deck motion and that of the cables for the Owensboro bridge. 

Note that for the Maysville bridge a 2:1 relationship is seen between the deck spectrum and 

the corresponding cable spectrum, indicating the possibility of parametric (axial) excitation of 

the cable resulting from deck motion. 

 

  

  
Figure 4.16 Typical Accelerometer Placement and Mounting for Second Field Survey Test 
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Figure 4.17 Cable to Anchor Comparison for Owensboro (left) and Maysville (right) for 

Anchor Y (In-Plane) to Cable Z (Out-of-Plane) Spectra 

 

4.3. Finite Element Analysis 
 

Finite element (FE) models were developed for the Owensboro Bridge cables using 

cable properties from the original drawings and as-built information provided after the 

construction was completed. This section describes the development of the FE models of a  set 

of 12 unrestrained cables, and comparison of the results to those of the field survey 

experiments. Cable models were developed using ANSYS finite element software. 

 

The Owensboro Bridge includes 96 cables in eight sets of 12 cables. Two planes of 

cables, designated “upstream” and “downstream” include cables numbered from 1 to 48 from 

the Kentucky to the Indiana side of the bridge. To describe the development of an FE model of 

a representative set of twelve cables, upstream cables 1 to 12 will be the focus of the 

discussion. Data to enable development of similar models of all 96 cables is included. 

 

Each cable model is developed using three-dimensional beam elements (ANSYS 

Beam Element Type 4). Prior experience modeling bridge stay cables indicated that bending 

effects should be included for correlated models of some cables, so beam elements were used 
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herein. Each cable is modeled with 35 nodes, with nodes 1 and 35 respectively at the 

coordinates specified as Work Points B1 and T1 in Figure 4.18, and the others equally spaced 

between the endpoints.  

 

Figure 4.18 Cable Workpoints shown on the Bridge Plans 

 

 Thirty-four beam elements are defined between each consecutive pair of end points. 

Representing fixed boundary conditions, all six degrees-of-freedom (DOFs) are restrained for 

the two endpoints of each cable. The cable tension was incorporated in the analysis by first 

performing a static analysis to prestress the cables. A block Lanczos modal analysis was run to 

determine the fundamental frequencies of the cables. 

 

Varying cable geometry and material properties necessary to develop FE models of 

each individual cable include diameter, Young’s modulus, mass density and initial strain. 

These properties are summarized, along with coordinates of the endpoints of the cables, in 

Table 4.1. Endpoints of the cables were defined as Work Points B1 and T1 of the drawings. As 

has been used on prior cable-stayed bridge projects, the effective Young’s modulii were 

computed using Kollbruner’s relation (Kollbruner, 1980). The mass densities were computed 

using the cable fabricated length, weight per unit length and cross section area. Also in the 

models, two additional properties were specified for all cables: Poisson’s ration and modal 
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damping. Poisson’s ratio was specified as 0.30. Modal damping was specified to be one 

quarter of one percent, 0.0025. Note that modal damping does not enter into the normal modes 

computation performed with these models. Figure 4.19 presents the finite element model mesh 

with boundary conditions indicated. Table 4.2 and Figure 4.20 present the computed 

fundamental frequencies compared to experimental results. Tables 4.3 and 4.4 present the 

complete geometry and properties for all cables. 

 
Table 4.1: Cable Geometry and Material Properties of Upstream Cables 1-12 

 
 

 
Figure 4.19 Finite Element Model of  Twelve Unrestrained Cables of the Owensboro Bridge 
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Table 4.2: Finite Element Model Fundamental Frequency Results Compared with Test 
Frequencies and String Model Frequencies 

upstream 
cable # 

Field 
(Hz) 

String 
(Hz) 

ANSYS 
(Hz) 

ANSYS 
restrained 

1 0.5682 0.5550 0.6133 0.61113 
2 0.625 0.5740 0.6158 0.60756 
3 0.6944 0.6850 0.7522 0.73727 
4 0.6944 0.7350 0.7641 0.74542 
5 0.7813 0.8280 0.8456 0.82347 
6 0.8333 0.8840 0.9824 0.95452 
7 0.9615 0.9640 1.074 1.041 
8 0.8929 1.0600 0.9257 0.89452 
9 1.0417 1.1620 0.9523 0.92366 

10 1.25 1.3300 1.133 1.083 
11 1.25 1.4010 1.242 1.178 
12 1.5625 1.9030 1.178 1.127 
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Figure 4.20 Comparison of Finite Element Model Fundamental Frequency Results for Cables 
1-12 E to Experimental and String Model Frequencies 
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To add restrainers to a model of a set of twelve cables, additional beam elements 

connect the nodes of the cables closest to the restrainer locations. Note that the restrainers 

were installed without specific locations indicated in the drawings relative to the work points 

that define the cable lengths. Restrainer locations in the model were established using the 

geometry indicated on the drawings and observations of the installed restrainers. Note also that 

the restrainers are a system including the following (as seen in Figure 4 above): an elastic 

interface between the cable and the collar (cable band), the collar, threaded stud welded to the 

cable and screwed into the collar, and two criss-crossing cable ties (bridge wires). Past 

experience has identified that the cross-ties are the dominant component in this system, 

therefore the cross-ties are modeled as single cables, with a cross-sectional area equivalent to 

the two cris-crossing cables, connecting at the appropriate nodes. 

 

 
Figure 4.21 Photograph of Restrainers on the Owensboro Bridge 

 

Properties of the cross ties are as follows: cross-section diameter = 0.707 inches, 

Young’s modulus = 20x106 psi, density = 0.01826 slugs/in3, Poisson’s ratio = 0.3 and modal 
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damping ratio = 0.0025. Two lines of restrainers are installed for each set of ten cables. The 

restrainer locations for the model are specified by listing a cable number (in this set the cables 

are numbered from 1 through 12 with 1 being the longest and 12 being the shortest) with a 

node number (nodes are numbered from 1 to 35 from the deck to the tower). The first 

restrainer line connects the following cable-nodes: 1-10, 2-9, 3-9, 4-7, and 5-4. The second 

restrainer line connects the following cable-nodes: 1-17, 2-17, 3-16, 4-15, 5-14, 6-12, 7-10, 8-

7, and 9-4. The third restrainer line connects the following cable-nodes: 1-26, 2-26, 3-26, 4-26, 

5-25, 6-24, 7-23, 8-22, 9-21, 10-20, 11-19, and 12-18. For the restrainers, tension-only 

elements are used rather than beam elements. The model mesh is presented in Figure 4.22. 

Fundamental frequency results of the restrained cable model are included above in Table 4.4. 

As noted in the field test results, the out-of-plane response of the cables is not appreciably 

affected by the restrainers, so the fundamental cable frequencies from the restrained cable 

model are only slightly lower than that of the unrestrained cable model. 

 

 
Figure 4.22: Finite Element Model of Twelve Restrained Cables of the Owensboro Bridge 

 

Finally, unrestrained models of uptream cables 1-48 and downstream cables 1-24 of 

the Owensboro Bridge were constructed in sets of 12 as described above and using the as-built 

information provided in Tables 4.3 and 4.4. The fundamental frequencies resulting from these 

models were compared to the field test results. Field tests were not performed in August 2003 
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on downstream cables 25-48, therefore no FE models were constructed and no comparisons 

were made for these cables. The results of these comparisons are presented in Figure 4.23. 

There is reasonable correlation to the field test data with larger discrepancies in shorter cables. 

 

Table 4.3 Cable Geometry and Material Properties for Upstream Cables 1-48 

 



Cable Testing and Modeling 

 107

Table 4.4 Cable Geometry and Material Properties for Downstream Cables 1-24 
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Figure 4.23 Comparison of Finite Element Frequency Results and Field Test Results 
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These results provided reasonable model correlation, with larger differences in shorter 

cables. As part of this effort and described above under the testing section, a study was 

undertaken to examine signal processing parameter selection with the goal of reducing the 

shorter cable resolution. Although the resolution can be improved (decreased) slightly, other 

issues such as zero-padding effects may arise. 

 

Another, and more critical, question was whether the above-the deck anchors needed 

to be modeled in detail for analysis of the cable instead of as providing a fixed end condition. 

A FE study using inclined cable models with springs in the transverse directions at their base 

illustrated the change in fundamental frequency that occurs with reduced stiffness at the 

anchor. Figure 4.24 presents an illustration of this trend, along with a definition of critical 

stiffness – the anchor stiffness required to result in a cable fundamental frequency in that 

direction that is 95% of the fixed boundary condition frequency. 

 

 
Figure 4.24 Cable Frequency Trend vs. Anchor Stiffness and Definition of Critical Stiffness 

 

To evaluate the necessity for including a detailed model of the anchor to improve 

correlation, a detailed finite element model of the deck anchorages was constructed with mesh 

as presented in Figure 4.25. The model was developed so that the geometry for different cable 

anchors could be used to create a detailed model of each cable anchor. A selection of these 

anchor models were studied with tranverse forces applied to represent the loading of the 
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anchor due to motion of the cable. As seen in Figures 4.26 and 4.27, deflections of the anchors 

under various loadings were computed and used to determine the anchor stiffness in the two 

transverse (axial stiffness was not a consideration here) directions. 

 

The result of this study was that the in-plane (vertical) transverse direction had a 

stiffness that was much higher than the critical stiffness value as expected by looking at the 

anchor dimensions at the deck. However, in the out-of-plane (lateral) transverse direction, the 

stiffness approached the critical stiffness defined for fixed-fixed modeling boundary 

conditions. The lateral stiffness was slightly higher than critical, though, so a fixed boundary 

condition is appropriate for the Owensboro cables.  

Figure 4.25 FE model of the Owensboro anchor along side anchor picture 

 

 
Figure 4.26 Deflected FE Model with Transverse Loading Applied from Cable 
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Figure 4.27 Anchor Force-Deflection Plots for Selected Owensboro Anchor Geometries: In-

Plane (left) and Out-of-Plane (right) 
 
For improved correlation with the fixed boundary condition, additional parameter 

studies were performed to indentify the properties of the cable that have the most significant 

effect on the frequency of the cable.  Since the geometry of the cable, length and diameter, are 

known to a high degree of certainty, they were not included in the parameter study.  This study 

showed that the tension in the cable had a much greater affect on the frequency than the 

Elastic Modulus, or the density.   

 
Discrepancies in the as-built tensions and the actual tension in the cables does not 

seem entirely unlikely because of the drastic differences between the original bridge plan 

tension values and the as-built tension values. Adjusting the initial strain in upstream cable 12 

from .000153 to .000300 results in a well correlatated frequency value.  This corresponds to a 

tension increase of 146 kips to 286 kips. Though this seems like a large adjustment, the 

original bridge plans specify a tension load of 520 kips for upstream cable 12. Consequently, 

this adjustment is well within the original tension specification.  Results for upstream cables 1 

through 12 are included in Table 4.5. There are no known methods for directly measuring the 

tension of cables that have been installed on the bridge without built-in instrumentation. 

 
Therefore, to this point, the as-built load values provided are the best information 

available. However, tensions are expected to change with deck creep and other use-life 

factors, and with temperature. Consequently, a periodic survey of frequencies may be useful 

for comparison with design predictions of tension changes.  The FE models using the as-built 

load values provide reasonable correlation, and no further modifications will be performed.  

Tables 4.6 and 4.7 present the frequency results for the models and field tests. 
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Table 4.5 Tension Adjustments for Model Correlation of Upstream Cables 1-12 

Cable 
Number 

Field Test 
Frequency 

 
(Hz) 

As-Built 
Frequency 

 
(Hz) 

As-Built 
Tension 

 
(lbs) 

Adjusted 
Model 

Tension 
(lbs) 

Adjusted 
Model 

Frequency 
(Hz) 

Original 
Plans 

Tension 
(lbs) 

1 0.5682 0.6133 901 777 0.571 778 
2 0.625 0.6158 845 865 0.6231 776 
3 0.6944 0.7522 1366 1166 0.6961 1184 
4 0.6944 0.7641 659 548 0.6985 646 
5 0.7813 0.8456 714 602 0.7782 715 
6 0.8333 0.9824 768 550 0.8353 652 
7 0.9615 1.074 713 570 0.9631 607 
8 0.8929 0.9257 391 360 0.8896 560 
9 1.0417 0.9523 301 365 1.043 504 
10 1.25 1.133 301 373 1.2505 478 
11 1.25 1.242 230 235 1.253 357 
12 1.5625 1.178 146 286 1.568 520 

 
Table 4.6 Downstream Cable Frequency Results 

Cable 
Number 

Field 
(Hz) 

String 
(Hz) 

ANSYS 
(Hz) 

ANSYS 
restrained 

% Difference 
Field vs ANSYS 

1 0.5435 0.5550 0.6133 0.6098 -12.84 
2 0.5952 0.5740 0.6253 0.6184 -5.06 
3 0.6944 0.6850 0.7386 0.7274 -6.37 
4 0.6944 0.7350 0.7708 0.7486 -11.00 
5 0.7353 0.8280 0.9147 0.8899 -24.40 
6 0.7813 0.8840 0.9559 0.9294 -22.35 
7 0.9615 0.9640 1.0420 1.0110 -8.37 
8 1.0417 1.0600 0.9223 0.8927 11.46 
9 1.0417 1.1620 1.0740 1.0350 -3.10 
10 1.25 1.3300 1.1000 1.0570 12.00 
11 1.3889 1.4010 1.2420 1.1580 10.58 
12 1.5625 1.9030 1.2420 1.2070 20.51 
13 1.5625 1.9180 1.3250 1.2800 15.20 
14 1.25 1.4150 1.2980 1.2030 -3.84 
15 1.25 1.3430 1.0110 0.9541 19.12 
16 1.1364 1.1810 1.012 0.9808 10.95 
17 1.0417 1.0770 0.8644 0.8418 17.02 
18 0.8929 0.9770 0.8372 0.8137 6.24 
19 0.8333 0.8940 0.7789 0.7574 6.53 
20 0.7813 0.8270 0.6927 0.6754 11.34 
21 0.6944 0.6480 0.5347 0.5256 23.00 
22 0.6944 0.6120 0.5501 0.5412 20.78 
23 0.5952 0.5620 0.6031 0.5949 -1.33 
24 0.5628 0.5730 0.5959 0.59 -5.88 
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Table 4.7 Upstream Cable Frequency Results  

Cable 
Number 

Field 
(Hz) 

String 
(Hz) 

ANSYS 
(Hz) 

ANSYS 
restrained 

% Difference 
Field vs ANSYS 

1 0.5682 0.5550 0.6133 0.61113 -7.94 
2 0.625 0.5740 0.6158 0.60756 1.47 
3 0.6944 0.6850 0.7522 0.73727 -8.32 
4 0.6944 0.7350 0.7641 0.74542 -10.04 
5 0.7813 0.8280 0.8456 0.82347 -8.23 
6 0.8333 0.8840 0.9824 0.95452 -17.89 
7 0.9615 0.9640 1.074 1.041 -11.70 
8 0.8929 1.0600 0.9257 0.89452 -3.67 
9 1.0417 1.1620 0.9523 0.92366 8.58 
10 1.25 1.3300 1.133 1.083 9.36 
11 1.25 1.4010 1.242 1.178 0.64 
12 1.5625 1.9030 1.178 1.127 24.61 
13 1.5625  1.297  16.99 
14 1.25  1.298  -3.84 
15 1.25  1.182  5.44 
16 1.0417  1.039  0.26 
17 1.0417  0.9303  10.69 
18 0.8929  0.8268  7.40 
19 0.8333  0.8036  3.56 
20 0.7813  0.7258  7.10 
21 0.6944  0.5305  23.60 
22 0.6944  0.5598  19.38 
23 0.5682  0.5629  0.93 
24 0.5208  0.5959  -14.42 
25 0.5682  0.3953  30.43 
26 0.625  0.5147  17.65 
27 0.6579  0.5447  17.21 
28 0.6944  0.5422  21.92 
29 0.7813  0.7054  9.71 
30 0.8333  0.8212  1.45 
31 0.9615  0.866  9.93 
32 1.0417  0.9339  10.35 
33 1.1364  1.036  8.83 
34 1.25  1.023  18.16 
35 1.5625  1.367  12.51 
36 1.3889  1.228  11.58 
37 1.5625  1.211  22.50 
38 1.5625  1.301  16.74 
39 1.25  1.033  17.36 
40 1.1364  1.184  -4.19 
41 1.0417  0.929  10.82 
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Table 4.7 Continued Upstream Cable Frequency Results  

Cable 
Number 

Field 
(Hz) 

String 
(Hz) 

ANSYS 
(Hz) 

ANSYS 
restrained 

% Difference 
Field vs ANSYS 

42 0.8333  0.8365  -0.38 
43 0.7813  0.7705  1.38 
44 0.7353  0.7746  -5.34 
45 0.6944  0.7635  -9.95 
46 0.6944  0.7312  -5.30 
47 0.5952  0.6164  -3.56 
48 0.5682  0.6133  -7.94 

 

4.4. Remarks 
 

Cable testing and modeling for the Owensboro bridge included two field tests of the 

cables (October 2002 and August 2003). The first of these was just before the bridge opened 

with excitation provided by loaded trucks. The second used ambient (typical traffic and wind) 

excitation. Signal processing analysis of the recorded acceleration time histories identified 

fundamental frequencies of the cables. Finite element models were developed for all cables 

using the as-built cable properties and compared to field test results showing good correlation. 

 

Notable results include the following: 

 

 1) A critical stiffness value for the anchor was defined as the stiffness required for 

the cable frequency to be 95% of the fixed-boundary frequency. A detailed model of each 

Owensboro bridge anchor was constructed to determine its influence on the cable 

response. Although the lateral stiffness approaches the critical value for the anchor 

design, it is larger. Therefore, the cables can be modelled as fixed to the deck and 

detailed models of the anchors are not required.  

 

 2) Signal processing was performed to identify the fundamental cable frequency 

from each cable record. The cable transverse direction response (perpendicular to the 

vertical plane containing the parallel cables and restrainers) enabled identification of the 

unrestrained fundamental frequency for each cable. The Cepstrum signal processing 

approach, developed at the University of Kentucky for a previous cable-stayed bridge 
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project, allowed automated processing of the data records. Studies were conducted to 

improve understanding of the FFT parameters specified for the analyses.   

 

 3) Using short time records with Cepstrum analysis enables testing of all bridge 

stay cables in 1.5 days (facilitating periodic visits for cable monitoring). Periodic 

monitoring may be useful for the cables of the Owensboro bridge to understand tension 

changes as the bridge is in use. 

 

 4) Field tests of the cables on both occasions resulted in consistent fundamental 

frequencies. 

 

 5) Excessive motion of the cable cross ties (restrainers) was observed during both 

field tests. This raises concerns suggesting close inspection of the cross ties in case 

fatigue becomes a problem. 

 

 6) Eight technical papers and theses related to the Owensboro bridge testing and 

nonlinear modeling of cables (not in the scope of this project and under separate support) 

have been completed from 2003 through 2005 and are included in the references. 

 

Finally, note that the cable testing and modeling effort could not have been 

accomplished without the assistance of many collegues and capable students who helped with 

the bridge testing, data analysis and model verification. Their careful attention to detail 

contributed to the excellent results seen herein. 
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5. CONCLUSIONS AND RECOMMENDATIONS 
 
 
 
5.1. General  
 

Owensboro cable-stayed bridge, dedicated as the William H. Natcher Bridge, was 

completed in 2002. It connects Owensboro (Daviess County), Kentucky and Rockport 

(Spencer County), Indiana over the Ohio River. Since the main span length was increased and 

more shallow and slender stiffness girders were used in modern cable-stayed bridges, the 

safety of the whole bridges under service loadings and environmental dynamic loadings 

presents increasingly important concerns in design, construction and service. It has become 

essential to synthetically understand and realistically predict their response to these loadings. 

The present study focuses on the baseline modeling of the Owensboro cable-stayed bridge. It 

has been demonstrated that the dynamics-based structural evaluation method provides a 

‘global’ way to evaluate the structural state and safety of the bridge. The dynamics-based 

structural evaluation requires improvements in instrumentation for sensing and recording, data 

acquisition, algorithms for system identification, model updating and structure evaluation. The 

finite element model calibration through the field dynamic testing plays an important role in 

the dynamics-based structural evaluation. The calibrated finite elemet model can be used as a 

baseline for health assessments of the bridge structure in the future. 

 
5.2. Finite Element Modeling and Dynamic Properties 
 

The complete 3-D nonlinear modeling of a cable-stayed bridge has proved to be 

difficult. The smaller discretization would be computationally very large and inefficient. 

Convergence of such a large number of nonlinear elements is not always guaranteed. The 

displacement convergence criterion is effective and often results in the convergent 

solution. Due to the cable sagging, the static analysis of a cable-stayed bridge is always a 

geometric nonlinear. The stress stiffening of cable elements plays an important role in 

both the static and dynamic analysis. Nonlinear static analysis without the stress 

stiffening effect will lead to an aborted run due to the divergent oscillation even though 

the displacement convergence criterion is used. Large deflection has been demonstrated 
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to be the limited effect on the member forces and deck deflection of the bridge under 

dead loads. After introducing enough amount of initial strain in the cables, the static 

analysis of the Owensboro cable-stayed bridge due to dead loads can be elastic and small 

deflection. However, the stress stiffening effect is always required to ensure the 

convergent solution. 

 

The initial strain in the cables is the key factor to control the initial equilibrium 

configuration under the dead load. For a complete bridge, the common fact is that the 

initial position of the cable and bridge is unknown. The initial geometry of the bridge 

which was modeled is really the deflected shape of the bridge loaded by the dead load. 

The initial equilibrium configuration of the bridge due to dead loads can be 

approximately achieved by referring to the bridge plans. 

 

It is demonstrated that a cable-stayed bridge is a highly pre-stressed structure. The 

self-weight effect can significantly improve the stiffness of a cable-stayed bridge. The 

modal or any dynamic analysis must start from the initial equilibrium configuration due 

to dead loads. This initial equilibrium configuration can be a small deflection static 

analysis because the large deflection can be ignored. The modal analysis of a cable-

stayed bridge should include two steps: small deflection static analysis under the dead 

load and followed by pre-stressed modal analysis, so that the dead load effect on the 

stiffness can be included. In other words, the modal analysis of a cable-stayed bridge 

must be a pre-stressed modal analysis. 

 

It is observed that one dominated mode of the Owensboro cable-stayed bridge is 

always coupled with other modes. The dominated mode shapes of the Owensboro cable-

stayed bridge in the low-frequency (0~1.0 Hz) range are mainly vertical direction. This 

reveals the fact that the lateral stiffness of the cable stayed bridge is stronger than that of 

the suspension bridge (Ren and Harik 2001). From the parametric studies, it is found that 

the key parameters affecting the vertical modal properties are the mass, cable sectional 

area, cable elastic modulus and deck vertical bending stiffness. The key parameters 
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affecting the transverse and torsion modal properties are the mass, cable sectional area, 

cable elastic modulus and deck lateral bending stiffness. 

 

5.3. Free Vibration Testing and Model Calibration 

 

On site free vibration testing provides a fast way to obtain the real dynamic 

properties of a structure. The modal parameters can be effectively extracted from output- 

only dynamic testing by using the frequency domain based peak picking (PP) method. 

The peak picking identification is very fast and efficient since no model has to be fitted to 

the data. For real applications, the peak picking method could be used on site to verify the 

quality of the measurements. But the mode shapes for the transverse direction did not 

match well since the bridge is very stiff in the transverse direction and the transverse 

excitation data could not be filtered from the noise data. 

 

A good agreement of frequencies has been found between the results of the 

calibrated finite element model and in situ free vibration testing results. The identified 

frequencies from the high-speed measurements are quite stable. The better matching for 

higher modes is not expected and not realistic either, as the experimental modal 

properties of the bridge come from the output-only measurement. The calibrated finite 

element model may be used as a baseline in the future structural analysis and monitoring 

of the Owensboro cable-stayed bridge. 

 

5.4. Cable Testing and Modeling 

 

A critical stiffness value for the anchor was defined as the stiffness required for 

the cable frequency to be 95% of the fixed boundary frequency. Detailed models of the 

anchors were constructed to determine whether they had to be included in the cable 

models. Although the lateral stiffness approaches the critical value, it is larger. Therefore, 

the cables can be modelled as fixed to the deck and detailed models of the anchors are not 

required. 
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Signal processing was performed to identify the fundamental cable frequency 

from each cable record. Field tests of the cables on both occasions resulted in consistent 

fundamental frequencies. The cable transverse direction response (perpendicular to the 

vertical plane containing the parallel cables and restrainers) enabled identification of the 

unrestrained fundamental frequency for each cable. Excessive motion of the cable cross 

ties (restrainers) was observed during both field tests. This raises concerns suggesting 

close inspection of the cross ties in case fatigue becomes a problem. 

 

The Cepstrum signal processing approach, developed at the University of 

Kentucky for a previous cable-stayed bridge project, allowed automated processing of the 

data records. Using short time records with Cepstrum analysis enables testing of all 

bridge stay cables in 1.5 days. Periodic monitoring may be useful for the cables of the 

Owensboro bridge to understand tension changes as the bridge is in use. 
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